Amphiphilic biodegradable block copolymers and...

Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S354000, C528S361000, C525S450000, C525S540000

Reexamination Certificate

active

06569528

ABSTRACT:

BACKGROUND OF THE INVENTION,
1. Field of the Invention
The present invention relates generally to amphiphilic biodegradable block copolymers and self-assembled polymer aggregates formed from the same in aqueous milieu. More particularly, the present invention relates to amphiphilic biodegradable block copolymers comprising polyethylenimine (PEI) as a hydrophilic block and aliphatic polyesters as a hydrophobic block, and self-assembled polymer aggregates formed from the block copolymers in aqueous milieu.
2. Description of the Related Arts
Recently, nanostrucured materials have received much attention as a potentially effective drug carrier. Therefore, various amphiphilic polymers comprising both a hydrophobic block and a hydrophilic block have been synthesized in order to develop effective nanostructures. In aqueous milieu, the hydrophobic compartment of an amphiphilic polymer has a tendency to self-assemble in order to avoid water and to minimize free interfacial energy of the system. By this hydrophobic interaction, the amphiphilic polymers form self-assembled aggregates in aqueous milieu. In addition, the hydrophilic blocks are uniformly dissolved in aqueous milieu and thereby the aggregates maintain a thermodynamically stable structure.
As compared with conventional low-molecular-weight micelles, polymer aggregates can form a more stable structure by chain entanglement and crystallinity of polymers, which is the reason why synthetic polymers have been extensively used as a material for drug delivery vehicles. Particularly, because the formed structure is uniform and nano-scale, it can be applied as a targetable drug delivery system, a carrier micelle for solubilizing insoluble drugs, and a gene delivery system.
These amphiphilic polymers exhibit various properties depending on their component blocks. For example, physicochemical properties of amphiphilic polymers and structures formed therefrom are determined by a molecular weight of the polymer, a ratio of hydrophilic/hydrophobic blocks, rigidity of blocks, affinity between blocks, molecular structure of blocks, charge density of a hydrophilic block, addition of ligands, etc.
In connection with a drug delivery system, many studies have been conducted on hydrophilic polymers. Hydrophilic polymers such as poly(ethylene oxide) (PEO) or poly(ethylene glycol) (PEG) have an excellent biocompatibility. In particular, there are many reports regarding the addition of poly(ethylene oxide) into various hydrophobic blocks.
For example, R. Langer of MIT synthesized polymer nanoparticles comprising polyethylene oxide as a hydrophilic block and biodegradable polyester as a hydrophobic block. The polyesters such as polylactide or poly(D,L-lactide-co-glycolide) was approved as a biodegradable and biocompatible polymer for clinical uses by Food & Drug Administration (FDA) in USA. In this case, we can observe that poly(ethylene oxide) drifts to the surface of nanoparticles by phase separation and drug concentration effused in blood increases in comparison with that case when polymer particles without poly(ethylene oxide) was used[R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubeskoy, A. Milshteyn, J. Sinkule, V. Torchilin, R. Langer,
Int. Symp. Controlled Release Mater.,
20, 131 (1993)].
Additionally, there have been reported the preparation of self-assembled polymer aggregates using poly(ethylene oxide) as a hydrophilic block, and as for a hydrophobic block, for example, using poly(&bgr;-benzyl-L-aspartate) [G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y.Sakurai, K. Kataoka,
Langmuir,
9, 945 (1993)]; using poly(propylene oxide) [A. V. Kabanov, E. V. Batrakova, N. S. Neiknubanov, et al.
Journal of Controlled Release,
22, 141 (1992)]; using poly(&egr;-caprolactone) [C. Allen, J. Han, Y. Yu, D. Maysinger, A. Eisenberg,
Journal of Controlled Release,
63, 275 (2000)]; using oligo-methacrylate [T. Inoue, G. Chen, K. Nakamae, A. S. Hoffman,
Journal of Controlled Release,
51, 221 (1998)]; etc.
Recently, there have been reported the preparation of polymer aggregates using ionic interactions. K. Kataoka et al. proposed a novel concept of polymer aggregates, “polyion complex (PIC) micelles” formed by ionic bonding between polymers having counter ions, by using both poly(ethylene oxide)-poly(L-lysine) block copolymer and poly(ethylene oxide)-poly(L-aspartate) block copolymer [A. Harada and K. Kataoka,
Macromolecules,
28, 5294 (1995)]. By using this concept, they reported that lysozyme, which is a protein having an isoelectric point of 11 and thereby has positive charge, is successfully loaded within polymer micelles [A. Harada and K. Kataoka,
Macromolecules,
31, 288 (1998)].
In addition to core-shell type polymer micelles using poly(ethylene oxide), there have been many concerns on structures such as cylindrical micelles, hollow vesicles, hollow hoops, etc. Adi Eisenberg (McGill University in Canada) reported various types of polymer aggregates using poly(ethylene oxide)-polystyrene copolymer [K. Yu and A. Eisenberg,
Macromolecules,
29, 6359 (1996)]. In addition, D. E. Discher and D. Hammer (Pennsylvania University in USA) proposed a novel vesicular structure, “polymersome” using poly(ethylene oxide)-poly(ethylethylene) block copolymer [B M Discher, Y Y Won, D. S. Ege, J. C-M. Lee, F. S. Bates, D. E. Discher, D. A. Hammer,
Science,
284, 113 (1999)].
All the above polymer aggregates use poly(ethylene oxide) as a corona block in consideration that poly(ethylene oxide) is a nonionic polymer without reactivity with in vivo biological molecules and particularly, poly(ethylene oxide) having molecular weight of 5,000 or less can be filtrated at kidney to be discharged to the exterior. Thanks to such an excellent biocompatibility of poly(ethylene oxide), polymer aggregates using poly(ethylene oxide) have been extensively considered as a polymer material for drug delivery system. In particular, because poly(ethylene oxide) inhibits protein adsorption, polymer aggregation can be prevented from interaction with in vivo molecules in blood, thereby can be protected from removal by immunocytes such as mononuclear phagocyte system (MPS) and can stay in blood for a long time.
However, poly(ethylene oxide) does not have other functional groups except terminal groups, so to be limited to attach cell-adhesion molecules in application of a targetable drug delivery system. In addition, in application of oral or percutaneous administration, it is difficult to increase penetration into the tissue due to a large hydrodynamic volume of poly(ethylene oxide). Besides, there is a limitation in forming various structures of polymer aggregates. In addition, there is defect that block length has to be longer for forming polymer aggregates in comparison with ionic polymers, so that the volume of core part to contain drug is relatively small. Therefore, there have been needs for novel polymer aggregates using another polymers different from poly(ethylene oxide), depending on drug administration routes.
Aggregates formed from polymer electrolytes have been applied as a gene delivery carrier. However, electric charge of the polymer is used in coupling between a polymer and a gene, and therefore, it does not determine surface property of the aggregates.
Adi Eisenberg et al. (McGill University, Canada) reported various structures having a charged hydrophilic polymer as a corona block, wherein the charged polymer exists on the surface of the self-assembled aggregates. He employed polystyrene as a hydrophobic block and poly(acrylic acid) as a hydrophilic block. In this case, polymer aggregates can be formed from poly(acrylic acid) having much lower molecular weight compared with the conventional corona block such as poly(ethylene oxide). This structure is named as “crew-cut” polymer aggregates [L. Zhang and A. Eisenberg,
Science,
268, 1728 (1995); L. Zhang, K. Yu, A. Eisenberg,
Science,
272, 1777 (1996); L. Zhang and A. Eisenberg,
Macromolecules,
29, 8805 (1996)]. In

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Amphiphilic biodegradable block copolymers and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Amphiphilic biodegradable block copolymers and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amphiphilic biodegradable block copolymers and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3051257

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.