Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...
Reexamination Certificate
2000-11-06
2002-03-26
Raymond, Richard L. (Department: 1624)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Heterocyclic carbon compounds containing a hetero ring...
C514S267000, C544S250000, C544S106000, C544S336000, C544S361000, C540S476000, C540S597000, C546S087000
Reexamination Certificate
active
06362186
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to aminoalkyl substituted 9H-pyridino[2,3-b]indole and 9H-pyrimidino[4,5-b]indole derivatives which selectively bind to corticotropin-releasing factor (CRF
1
) receptors and to mammalian neuropeptide Y (NPY
1
) receptors. It further relates to pharmaceutical compositions containing such compounds and the use of such compounds in treating physiological disorders induced or facilitated by CRF or those associated with an excess of neuropeptide Y.
2. Description of the Related Art
Corticotropin releasing factor (herein referred to as CRF), a 41 amino acid peptide, is the primary physiological regulator of proopiomelanocortin (POMC) derived peptide secretion from the anterior pituitary gland [J. Rivier et al.,
Proc. Nat. Acad. Sci
. (
USA
) 80:4851 (1983); W. Vale et al.,
Science
213:1394 (1981)]. In addition to its endocrine role at the pituitary gland, immunohistochemical localization of CRF has demonstrated that the hormone has a broad extrahypothalamic distribution in the central nervous system and produces a wide spectrum of autonomic, electrophysiological and behavioral effects consistent with a neurotransmitter or neuromodulator role in brain [W. Vale et al.,
Rec. Prog. Horm. Res
. 39:245 (1983); G. F. Koob,
Persp. Behav. Med
. 2:39 (1985); E. B. De Souza et al.,
J. Neurosci
. 5:3189 (1985)]. There is also evidence that CRF plays a significant role in integrating the response of the immune system to physiological, psychological, and immunological stressors [J. E. Blalock,
Physiological reviews
69:1 (1989); J. E. Morley,
Life Sci
. 41:527 (1987)].
Clinical data provide evidence that CRF has a role in psychiatric disorders and neurological diseases including depression, anxiety-related disorders and feeding disorders. A role for CRF has also been postulated in the etiology and pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis as they relate to the dysfunction of CRF neurons in the central nervous system [for review see E. B. De Souza,
Hosp. Practice
23:59 (1988)].
In affective disorder, or major depression, the concentration of CRF is significantly increased in the cerebral spinal fluid (CSF) of drug-free individuals [C. B. Nemeroff et al.,
Science
226:1342 (1984); C. M. Banki et al.,
Am. J. Psychiatry
144:873 (1987); R. D. France et al.,
Biol. Psychiatry
28:86 (1988); M. Arato et al.,
Biol Psychiatry
25:355 (1989). Furthermore, the density of CRF receptors is significantly decreased in the frontal cortex of suicide victims, consistent with a hypersecretion of CRF [C. B. Nemeroff et al.,
Arch. Gen. Psychiatry
45:577 (1988)]. In addition, there is a blunted adrenocorticotropin (ACTH) response to CRF (i.v. administered) observed in depressed patients [P. W. Gold et al.,
Am J. Psychiatry
141:619 (1984); F. Holsboer et al.,
Psychoneuroendocrinology
9:147(1984); P. W. Gold et al.,
New Eng. J. Med
. 314:1129 (1986)]. Preclinical studies in rats and non-human primates provide additional support for the hypothesis that hypersecretion of CRF may be involved in the symptoms seen in human depression [R. M. Sapolsky,
Arch. Gen. Psychiatry
46:1047 (1989)]. There is preliminary evidence that tricyclic antidepressants can alter CRF levels and thus modulate the numbers of CRF receptors in brain [Grigoriadis et al.,
Neuropsychopharmacology
2:53 (1989)].
There has also been a role postulated for CRF in the etiology of anxiety-related disorders. CRF produces anxiogenic effects in animals and interactions between benzodiazepine
on-benzodiazepine anxiolytics and CRF have been demonstrated in a variety of behavioral anxiety models [D. R. Britton et al.,
Life Sci
. 31:363 (1982); C. W. Berridge and A. J. Dunn
Regul. Peptides
16:83 (1986)]. Preliminary studies using the putative CRF receptor antagonist &agr;-helical ovine CRF (9-41) in a variety of behavioral paradigms demonstrate that the antagonist produces “anxiolytic-like” effects that are qualitatively similar to the benzodiazepines [C. W Berridge and A. J. Dunn
Horm. Behav
. 21:393 (1987),
Brain Research Reviews
15:71 (1990)]. Neurochemical, endocrine and receptor binding studies have all demonstrated interactions between CRF and benzodiazepine anxiolytics providing further evidence for the involvement of CRF in these disorders. Chlordiazepoxide attenuates the “anxiogenic” effects of CRF in both the conflict test [K. T. Britton et al.,
Psychopharmacology
86:170 (1985); K. T. Britton et al.,
Psychopharmacology
94:306 (1988)] and in the acoustic startle test [N. R. Swerdlow et al.,
Psychopharmacology
88:147 (1986)] in rats. The benzodiazepine receptor antagonist (Ro l5-1788), which was without behavioral activity alone in the operant conflict test, reversed the effects of CRF in a dose-dependent manner while the benzodiazepine inverse agonist (FG 7142) enhanced the actions of CRF [K. T. Britton et al.,
Psychopharmacology
94:306 (1988)].
It has been further postulated that CRF has a role in immunological, cardiovascular or heart-related diseases such as hypertension, tachycardia and congestive heart failure, stroke and osteoporosis. CRF has also been implicated in premature birth, psychosocial dwarfism, stress-induced fever, ulcer, diarrhea, post-operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress.
The mechanisms and sites of action through which the standard anxiolytics and antidepressants produce their therapeutic effects remain to be elucidated. It has been hypothesized however, that they are involved in the suppression of the CRF hypersecretion that is observed in these disorders. of particular interest is that preliminary studies examining the effects of a CRF receptor antagonist (&agr;-helical CRF
9-41
) in a variety of behavioral paradigms have demonstrated that the CRF antagonist produces “anxiolytic-like” effects qualitatively similar to the benzodiazepines [for review see G. F. Koob and K. T. Britton, In:
Corticotropin-Releasing Factor: Basic and Clinical Studies of a Neuropeptide
, E. B. De Souza and C .B Nemeroff eds., CRC Press p221 (1990)].
Neuropeptide Y, a peptide first isolated in 1982, is widely distributed in the central and peripheral neurons and is responsible for a multitude of biological effects in the brain and the periphery. Various animal studies have shown that activation of neuropeptide NPY
1
receptors is related to vasoconstriction, Wahlestedt et al.,
Regul. Peptides
, 13: 307-318 (1986), McCauley and Westfall,
J. Pharmacol. Exp. Ther
. 261 863-868 (1992), and Grundemar et al.,
Br. J. Pharmacol
. 105: 45-50 (1992); and to stimulation of consummatory behavior, Flood and Morley,
Peptides
, 10: 963-966 (1989), Leibowitz and Alexander,
Peptides
, 12: 1251-1260 (1991), and Stanley et al.,
Peptides
, 13: 581-587 (1992). Grundemar and Hakanson,
TiPS
, 15: 153-159 (1994), state that, in animals, neuropeptide Y is a powerful stimuli of food intake, and an inducer of vasoconstriction leading to hypertension. They further point out that low levels of neuropeptide Y is associated with loss of appetite. These reports clearly indicate that compounds that inhibit the activity of this protein will reduce hypertension and appetite in animals.
SUMMARY OF THE INVENTION
This invention provides novel compounds of Formula I which interact with CRF
1
receptors and NPY
1
receptors. It further relates to the use of such compounds, pharmaceutical compositions comprising these compounds, and methods useful for the treatment of psychiatric and affective disorders and neurological diseases, including major depression, headaches, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy, as well as treatment of immunological, cardiovascular or heart-related diseases,
Darrow James W.
Horvath Raymond F.
Maynard George D.
Balasubramanian Venkataraman
McDonnell & Boehnen Hulbert & Berghoff
Neurogen Corporation
LandOfFree
Aminoalkyl substituted 9H-phridino[2,3-b] indole... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aminoalkyl substituted 9H-phridino[2,3-b] indole..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aminoalkyl substituted 9H-phridino[2,3-b] indole... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2845057