Amino acid chelates to reduce still births and increase...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heavy metal containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S696000, C424S697000, C424S709000, C424S715000, C424S718000, C424S722000, C424SDIG006, C424S601000, C424S602000, C424S603000, C424S604000, C424S605000, C424S606000, C424S617000, C424S630000, C424S631000, C424S632000, C424S633000, C424S634000, C424S635000, C424S637000, C424S638000, C424S639000, C424S640000, C424S641000, C424S643000, C424S646000, C424S647000, C424S648000, C424S655000, C424S657000, C424S658000, C424S659000, C424S660000, C424S663000, C424S681000, C424S682000, C424S683000, C424S686000, C424S

Reexamination Certificate

active

06197815

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Area of the Art
The present invention relates to amino acid chelates and methods of supplying animals with desired nutrients. Particularly, the present invention relates to the use of metal amino acid chelates to facilitate and promote the growth of animals. Expressly incorporated herein by reference is applicant's U.S. Pat. No. 5,504,055, for METAL AMINO ACID CHELATE, which issued on Apr. 2, 1996.
2. Description of the Prior Art
Stable amino acid chelates are capable of imparting nutritional benefits to living systems. Owing to more expedient and efficient assimilation, chelated forms of metals have become known to create desired levels of certain metals in living systems including, for example, plants. Others have developed processes for chelating which have attempted to react metal salts with amino acids, and resulting products have had solubility, pH and stability constraints.
It has thus become generally accepted that the chelated forms of these metals with amino acids are demonstrably better assimilated by plants, animals, and human beings than metal salts, the plant, animal and human tissues showing increased metal content when exposed to metal amino acid chelates. Prior art metal amino acid chelates are formed by reacting metal salts with amino acids. For example, metal salts, such as salts of iron, zinc, copper, magnesium, cobalt or calcium, when reacted with an amino acid, for example glycine, would form ferrous glycinate, zinc glycinate, copper glycinate, magnesium glycinate, cobalt glycinate, cobalt glycinate, or calcium glycinate, respectively.
Likewise, the metal amino acid chelates made according to the prior art processes result in products that are insoluble or unstable in water, particularly at a low pH or a pH above 7 As fully discussed in applicant's aforementioned U.S. Pat. No. 5,504,055, which has been expressly incorporated herein by reference, the chelation process shown in certain prior art references required heating under nitrogen (For example, per U.S. Pat. Nos. 2,877,253 and 2,957,806). Other prior art techniques produced chelates which were unstable or precipitated at a pH above 8 (U. S. Pat. Nos. 4,216,143 and 4,216,144).
Additionally, these prior art chelates have been known to precipitate out of solution when other chemical compounds, such as phosphates, are added to the chelate solution.
Prior art chelates also show stability problems over a period of time, the compounds precipitating after two or three days (U.S. Pat. No. 4,216,144). U.S. Pat. No. 3,396,104 shows formation of insoluble metal proteinates using saline water.
Likewise, there exists a longstanding desire to promoting animal growth, and various attempts to accomplish the same have employed elaborate and circumlocuted means. It has now been discovered that enhanced metal amino acid chelates incorporating features of the invention promotes growth in animals.
The present inventor has overcome significant aspects of both of these problems by developing, and patenting a material capable of delivering high levels of desired metal ions to agricultural products. Other attempts to address the clear need for supplying animals with selected compounds over time have taken different and convoluted paths, from subcutaneous implants to complex salts having cations being made from complexes including iron and methionine. However, nothing among the prior art has adequately addressed increasing desired metal uptake by the animal, and concomitant growth facilitation and enhancement for the treated animals.
By way of example, U.S. Pat. No. 3,991,750; which issued Nov. 16, 1976 to Vickery, and is assigned to SYNTEX CORPORATION, disclosed implantation of dromostanolone propionate subcutaneously to produce weight gain, inter alia. Without precisely elucidating the mechanism, the disclosure suggests that bioavailability of iron and methionine is effective for this purpose. Likewise, according to the process of the present invention, use of metal amino acid chelates demonstrably enhanced piglets, and juvenile chickens. However, no need for radical or surgical invasion is present in accordance with the instant teachings.
U.S. Pat. No. 4,067,994; which issued Jan. 10, 1976 to Anderson et al., and is assigned to ZINPRO CORP., likewise pointed to the use of novel complexers as food additive for enhancing growth. However, as mentioned above, and discussed in detail below, the use of salts for nutritional supplementation substantially constrains the utility of the involved compounds in terms of solubility, stability and pH. Further, problems with precipitating out of solution and the like degrading mechanisms abound when using salts.
U.S. Pat. No. 4,326,523; which issued Apr. 27, 1982 to Wolfrom et al., and is assigned to INTERNATIONAL MINERAL & CHEMICAL CORP., also disclosed an implanted means for administering compounds including metals, over time to animals. In contradistinction to the instant teachings, this elaborate means for introduction likewise adds difficulty and militates strongly for the need for applicant' novel method for enhancing and facilitating the growth of livestock.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is a prime objective of the present invention to provide a process for preparing metal amino acid chelates beneficial to animal growth which overcome the drawbacks of the prior art.
It is another object of the present invention to provide a process for promoting animal growth by the use of amino acid chelates having demonstrable results and benefits.
It is yet another object of the present invention to provide the above objects in a process for producing a metal complex and offering the same for consumption to animals, whereby mortality is decreased and weight and feed conversion parameters are enhanced.
Briefly stated, metal amino acid chelates administered in accordance with the invention to animals are beneficial for facilitating and promoting growth by increasing desired metallic ion uptake. The present invention is directed to a process for providing an animal feed additive by preparing unique metal amino acid chelates, and the metal amino acid chelate growth facilitator, promoter and enhancer prepared by the process.
Further, the present invention is directed to metal amino acid chelates which are soluble in water wherein the solution taught has a pH from about 4.5 to about 8.5. Still further the invention is directed to metal amino acid chelates which are stable over an extended period of time, the stability or solubility not being adversely effected by the addition of other additives to the solution.
The process for preparing metal amino acid chelates of the present invention comprises the production of a solution of the desired metal ion by dissolving a water soluble salt of the metal in deaerated water, adding the salt solution to an acid solution prepared by mixing an organic acid with an amino acid to form a chelate, and adjusting the pH of the solution to a pH between 4.5 and 8.5.
The process results in a chelate of the metal ion with the amino acid and the organic acid, the chelate having a unique composition as demonstrated by the spectral analysis
According to a feature of the present invention, there is provided a process for facilitating and promoting growth in animals, comprising preparing a metal containing composition comprising the steps of deaerating water, dissolving a metal salt in the deaerated water to produce a salt solution, mixing an organic acid with an amino acid to provide an organic solution, forming a chelate solution by adding the organic solution to the salt solution and adjusting the pH of the chelate solution to a range of from about 4.5 to about 8.5 by the addition of a base solution to yield an enhanced chelate, combining an effective amount of said enhanced chelate with animal feed, and administering a resulting mixture to animals.
According to an additional feature of the present invention, there is provided a composition of matter for facilitating and promoting the growth of animals comp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Amino acid chelates to reduce still births and increase... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Amino acid chelates to reduce still births and increase..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amino acid chelates to reduce still births and increase... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2493593

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.