Aminimide-containing molecules and materials as molecular...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S307000, C527S200000

Reexamination Certificate

active

06271195

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the logical development of biochemical and biopharmaceutical agents and of new materials including fabricated materials such as fibers, beads, films, and gels. Specifically, the invention relates to the development of molecular modules based on aminimide and related structures, and to the use of these modules in the assembly of molecules and fabricated materials with tailored properties, which are determined by the contributions of the individual building modules. The molecular modules of the invention are preferably chiral, and can be used to synthesize new compounds and fabricated materials which are able to recognize biological receptors, enzymes, genetic materials, and other chiral molecules, and are thus of great interest in the fields of biopharmaceuticals, separation and materials science.
BACKGROUND OF THE INVENTION
The discovery of new molecules has traditionally focused in two broad areas, biologically active molecules, which are used as drugs for the treatment of life-threatening diseases, and new materials, which are used in commercial, especially high-technological applications. In both areas, the strategy used to discover new molecules has involved two basic operations: (i) a more or less random choice of a molecular candidate, prepared either via chemical synthesis or isolated from natural sources, and (ii) the testing of the molecular candidate for the property or properties of interest. This discovery cycle is repeated indefinitely until a molecule possessing the desirable properties is located. In the majority of cases, the molecular types chosen for testing have belonged to rather narrowly defined chemical classes. For example, the discovery of new peptide hormones has involved work with peptides; the discovery of new therapeutic steroids has involved work with the steroid nucleus; the discovery of new surfaces to be used in the construction of computer chips or sensors has involved work with inorganic materials, etc. As a result, the discovery of new functional molecules, being ad hoc in nature and relying predominantly on serendipity, has been an extremely time-consuming, laborious, unpredictable, and costly enterprise.
A brief account of the strategies and tactics used in the discovery of new-molecules is described below. The emphasis is on biologically interesting molecules; however, the technical problems encountered in the discovery of biologically active molecules as outlined here are also illustrative of the problems encountered in the discovery of molecules which can serve as new materials for high technological applications. Furthermore, as discussed below, these problems are also illustrative of the problems encountered in the development of fabricated materials for high technological applications.
2.1 Drug Design
Modern theories of biological activity state that biological activities, and therefore physiological states, are the result of molecular recognition events. For example, nucleotides can form complementary base pairs so that complementary single-stranded molecules hybridize resulting in double- or triple-helical structures that appear to be involved in regulation of gene expression. In another example, a biologically active molecule, referred to as a ligand, binds with another molecule, usually a macromolecule referred to as ligand-acceptor (e.g. a receptor or an enzyme), and this binding elicits a chain of molecular events which ultimately gives rise to a physiological state, e.g. normal cell growth and differentiation, abnormal cell growth leading to carcinogenesis, blood-pressure regulation, nerve-impulse-generation and -propagation, etc. The binding between ligand and ligand-acceptor is geometrically characteristic and extraordinarily specific, involving appropriate three-dimensional structural arrangements and chemical interactions.
2.1.1 Design and Synthesis of Nucleotides
Recent interest in gene therapy and manipulation of gene expression has focused on the design of synthetic oligonucleotides that can be used to block or suppress gene expression via an antisense, ribozyme or triple helix mechanism. To this end, the sequence of the native target DNA or RNA molecule is characterized and standard methods are used to synthesize oligonucleotides representing the complement of the desired target sequence (see, S. Crooke, The FASEB Journal, Vol. 7, April 1993, p. 533 and references cited therein). Attempts to design more stable forms of such oligonucleotides for use in vivo have typically involved the addition of various functional groups, e.g., halogens, azido, nitro, methyl, keto, etc. to various positions of the ribose or deoxyribose subunits (cf.,
The Organic Chemistry of Nucleic Acids,
Y. Mizuno, Elsevier Science Publishers BV, Amsterdam, The Netherlands, 1987).
2.1.2 Glycopeptides
As a result of recent advances in biological carbohydrate chemistry, carbohydrates increasingly are being viewed as the components of living systems with the enormously complex structures required for the encoding of the massive amounts of information needed to orchestrate the processes of life, e.g., cellular recognition, immunity, embryonic development, carcinogenesis and cell-death. Thus, whereas two naturally occurring amino acids can be used by nature to convey 2 fundamental molecular messages, i.e., via formation of the two possible dipeptide structures, and four different nucleotides convey 24 molecular messages, two different monosaccharide subunits can give rise to 11 unique disaccharides, and four dissimilar monosaccharides can give rise to up to 35,560 unique tetramers each capable of functioning as a fundamental discreet molecular messenger in a given physiological system.
The gangliosides are examples of the versatility and effect with which organisms can use saccharide structures. These molecules are glycolipids (sugar-lipid composites) and as such are able to position themselves at strategic locations on the cell wall: their lipid component enables them to anchor in the hydrophobic interior of the cell wall, positioning their hydrophilic component in the aqueous extracellular millieu. Thus the gangliosides (like many other saccharides) have been chosen to act as cellular sentries: they are involved in both the inactivation of bacterial toxins and in contact inhibition, the latter being the complex and poorly understood process by which normal cells inhibit the growth of adjacent cells, a property lost in most tumor cells. The structure of ganglioside GM, a potent inhibitor of the toxin secreted by the cholera organism, featuring a branched complex pentameric structure is shown below.
The oligosaccharide components of the glycoproteins (sugar-protein composites) responsible for the human blood-group antigens (the A, B, and O blood classes) are shown below.
Interactions involving complementary proteins and glycoproteins on red blood cells belonging to incompatible blood classes cause formation of aggregates, or clusters and are the cause for failed transfusions of human blood.
Numerous other biological processes and macromolecules are controlled by glycosylation (i.e., the covalent linking with sugars). Thus, deglycosylation of erythropoetin causes loss of the hormone's biological activity; deglycosylation of human gonadotropic hormone increases receptor binding but results in almost complete loss of biological activity (see Rademacher et al.,
Ann. Rev. Biochem
57, 785 (1988); and glycosylation of three sites in tissue plasminogen activating factor (TPA) produces a glycopolypeptide which is 30% more active than the polypeptide that has been glycosylated at two of the sites.
2.1.3 Design and Synthesis of Mimetics of Biological Ligands
A currently favored strategy for development of agents which can be used to treat diseases involves the discovery of forms of ligands of biological receptors, enzymes, or related macromolecules, which mimic such ligands and either boost, i.e., agonize, or suppress, i.e., antagonize the activity of the ligand. The discovery of such desirable ligan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aminimide-containing molecules and materials as molecular... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aminimide-containing molecules and materials as molecular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aminimide-containing molecules and materials as molecular... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2436478

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.