Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
1993-09-03
2004-08-31
Siew, Jeffrey (Department: 1637)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S007100, C435S091100, C435S091200, C536S022100, C536S023100, C536S024300, C536S024310, C536S024320, C536S024330, C536S024500, C536S025320
Reexamination Certificate
active
06783931
ABSTRACT:
FIELD OF THE INVENTION
This application is directed to nucleosides, oligonucleotides and oligonucleosides functionalized to include alkylamino functionality, and derivatives thereof. In certain embodiments, the compounds of the invention further include steroids, reporter molecules, reporter enzymes, lipophilic molecules, peptides or proteins attached to the nucleosides through the alkylamino group.
BACKGROUND OF THE INVENTION
Messenger RNA (mRNA) directs protein synthesis. Antisense methodology is the complementary hybridization of relatively short oligonucleotides to mRNA or DNA such that the normal, essential functions of these intracellular nucleic acids are disrupted. Hybridization is the sequence-specific hydrogen bonding via Watson-Crick base pairs of oligonucleotides to RNA or single-stranded DNA. Such base pairs are said to be complementary to one another.
The naturally occurring events that provide the disruption of the nucleic acid function, discussed by Cohen in
Oligonucleotides: Antisense Inhibitors of Gene Expression
, CRC Press, Inc., Boca Raton, Fla. (1989) are thought to be of two types. The first, hybridization arrest, denotes the terminating event in which the oligonucleotide inhibitor binds to the target nucleic acid and thus prevents, by simple steric hindrance, the binding of essential proteins, most often ribosomes, to the nucleic acid. Methyl phosphonate oligonucleotides (Miller, et al.,
Anti
-
Cancer Drug Design
1987, 2, 117) and &agr;-anomer oligonucleotides are the two most extensively studied antisense agents which are thought to disrupt nucleic acid function by hybridization arrest.
The second type of terminating event for antisense oligonucleotides involves the enzymatic cleavage of the targeted RNA by intracellular RNase H. A 2′-deoxyribofuranosyl oligonucleotide or oligonucleotide analog hybridizes with the targeted RNA and this duplex activates the RNase H enzyme to cleave the RNA strand, thus destroying the normal function of the RNA. Phosphorothioate oligonucleotides are the most prominent example of an antisense agent that operates by this type of antisense terminating event.
Considerable research is being directed to the application of oligonucleotides and oligonucleotide analogs as antisense agents for diagnostics, research reagents and potential therapeutic purposes. At least for therapeutic purposes, the antisense oligonucleotides and oligonucleotide analogs must be transported across cell membranes or taken up by cells to express activity. One method for increasing membrane or cellular transport is by the attachment of a pendant lipophilic group.
Ramirez, et al.,
J. Am. Chem. Soc
. 1982, 104, 5483, introduced the phospholipid group 5′-O-(1,2-di-O-myristoyl-sn-glycero-3-phosphoryl) into the dimer TpT independently at the 3′ and 5′ positions. Subsequently Shea, et al.,
Nuc. Acids Res
. 1990, 18, 3777, disclosed oligonucleotides having a 1,2-di-O-hexyldecyl-rac-glycerol group linked to a 5′-phosphate on the 5′-terminus of the oligonucleotide. Certain of the Shea, et. al. authors also disclosed these and other compounds in patent application PCT/US90/01002. A further glucosyl phospholipid was disclosed by Guerra, et al.,
Tetrahedron Letters
1987, 28, 3581.
In other work, a cholesteryl group was attached to the inter-nucleotide linkage between the first and second nucleotides (from the 3′ terminus) of an oligonucleotide. This work is disclosed in U.S. Pat. No. 4,958,013 and further by Letsinger, et al.,
Proc. Natl. Acad. Sci. USA
1989, 86, 6553. The aromatic intercalating agent anthraquinone was attached to the 2′ position of a sugar fragment of an oligonucleotide as reported by Yamana, et al.,
Bioconjugate Chem
. 1990, 1, 319. The same researchers placed pyrene-1-methyl at the 2′ position of a sugar (Yamana et. al.,
Tetrahedron Lett
. 1991, 32, 6347).
Lemairte, et al.,
Proc. Natl. Acad. Sci. USA
1986, 84, 648; and Leonetti, et al.,
Bioconjugate Chem
. 1990, 1, 149. The 3′ terminus of the oligonucleotides each include a 3′-terminal ribose sugar moiety. The poly(L-lysine) was linked to the oligonucleotide via periodate oxidation of this terminal ribose followed by reduction and coupling through a N-morpholine ring. Oligonucleotide-poly(L-lysine) conjugates are described in European Patent application 87109348.0. In this instance the lysine residue was coupled to a 5′ or 3′ phosphate of the 5′ or 3′ terminal nucleotide of the oligonucleotide. A disulfide linkage has also been utilized at the 3′ terminus of an oligonucleotide to link a peptide to the oligonucleotide as is described by Corey, et al.,
Science
1987, 238, 1401; Zuckermann, et al.,
J. Am. Chem. Soc
. 1988, 110, 1614; and Corey, et al.,
J. Am. Chem. Soc
. 1989, 111, 8524.
Nelson, et al.,
Nuc. Acids Res
. 1989, 17, 7187 describe a linking reagent for attaching biotin to the 3′-terminus of an oligonucleotide. This reagent, N-Fmoc-O-DMT-3-amino-1,2-propanediol is now commercially available from Clontech Laboratories (Palo Alto, Calif.) under the name 3′-Amine on. It is also commercially available under the name 3′-Amino-Modifier reagent from Glen Research Corporation (Sterling, Va.). This reagent was also utilized to link a peptide to an oligonucleotide as reported by Judy, et al.,
Tetrahedron Letters
1991, 32, 879. A similar commercial reagent (actually a series of such linkers having various lengths of polymethylene connectors) for linking to the 5′-terminus of an oligonucleotide is 5′-Amino-Modifier C6. These reagents are available from Glen Research Corporation (Sterling, Va.). These compounds or similar ones were utilized by Krieg, et al.,
Antisense Research and Development
1991, 1, 161 to link fluorescein to the 5′-terminus of an oligonucleotide. Other compounds of interest have also been linked to the 3′-terminus of an oligonucleotide. Asseline, et al.,
Proc. Natl. Acad. Sci. USA
1984, 81, 3297 described linking acridine on the 3′-terminal phosphate group of an poly (Tp) oligonucleotide via a polymethylene linkage. Haralambidis, et al.,
Tetrahedron Letters
1987, 28, 5199 report building a peptide on a solid state support and then linking an oligonucleotide to that peptide via the 3′ hydroxyl group of the 3′ terminal nucleotide of the oligonucleotide. Chollet,
Nucleosides
&
Nucleotides
1990, 9, 957 attached an Aminolink 2 (Applied Biosystems, Foster City, Calif.) to the 5′ terminal phosphate of an oligonucleotide. They then used the bifunctional linking group SMPB (Pierce Chemical Co., Rockford, Ill.) to link an interleukin protein to the oligonucleotide.
An EDTA iron complex has been linked to the 5 position of a pyrimidine nucleoside as reported by Dreyer, et al.,
Proc. Natl. Acad. Sci. USA
1985, 82, 968. Fluorescein has been linked to an oligonucleotide in the same manner as reported by Haralambidis, et al.,
Nucleic Acid Research
1987, 15, 4857 and biotin in the same manner as described in PCT application PCT/US/02198. Fluorescein, biotin and pyrene were also linked in the same manner as reported by Telser, et al.,
J . Am. Chem. Soc
. 1989, 111, 6966. A commercial reagent, Amino-Modifier-dT, from Glen Research Corporation (Sterling, Va.) can be utilized to introduce pyrimidine nucleotides bearing similar linking groups into oligonucleotides.
Cholic acid linked to EDTA for use in radioscintigraphic imaging studies was reported by Betebenner, et.al.,
Bioconjugate Chem
. 1991, 2, 117; however, it is not known to link cholic acid to nucleosides, nucleotides or oligonucleotides.
OBJECTS OF THE INVENTION
It is one object of this invention to provide nucleosides, oligonucleotides and oligonucleosides that include alkylamino chemical functionality.
It is a further object of the invention to provide compounds having improved transfer across cellular membranes.
It is another object to provide compounds that include intercalators, nucleic acid cleaving agents, cell surface phospholipids, and/
Cook Phillip Dan
Guinosso Charles J.
Manoharan Muthiah
ISIS Pharmaceuticals Inc.
Siew Jeffrey
Woodcock & Washburn LLP
LandOfFree
Amine-derivatized nucleosides and oligonucleosides does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Amine-derivatized nucleosides and oligonucleosides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amine-derivatized nucleosides and oligonucleosides will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3292655