Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing
Reexamination Certificate
2001-07-17
2004-03-02
Barts, Samuel (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Amino nitrogen containing
C564S355000, C514S653000
Reexamination Certificate
active
06700018
ABSTRACT:
BACKGROUND
1. Technical Field
The invention relates to amine compounds as well as methods and materials involved in modulating neurotransmitter reuptake.
2. Background Information
Neuronal signals are transmitted from cell to cell at specialized sites of contact known as synapses. The usual mechanism of transmission is indirect. The cells are electrically isolated from one another, the presynaptic cell being separated from the postsynaptic cell by a narrow synaptic cleft. A change of electrical potential in the presynaptic cell triggers it to release signaling molecules known as neurotransmitters. The neurotransmitters rapidly diffuse across the synaptic cleft and provoke an electrical change in the postsynaptic cell by binding to neurotransmitter-gated ion channels. After release, the excess neurotransmitters are rapidly removed, either by specific enzymes in the synaptic cleft or by reuptake into the presynaptic cell or surrounding glial cells. Reuptake is mediated by a variety of neurotransmitter transporters. Rapid removal ensures both spatial and temporal precision of signaling at a synapse. For example, rapid reuptake can prevent excess neurotransmitters from influencing neighboring cells and can clear the synaptic cleft before the next pulse of neurotransmitter release so that the timing of repeated, rapid signaling events is accurately communicated to the postsynaptic cell.
An imbalance of neurotransmitters in the brain can occur when not enough neurotransmitter is made and released from presynaptic cells or the reuptake of neurotransmitters by presynaptic cells is too rapid. If neurotransmitters such as serotonin, norepinephrine, or dopamine are not made and released in effective amounts or are cleared from the synaptic cleft too quickly, then cell-to-cell communication can be affected. Clinical manifestations of such imbalances include depression and related anxiety disorders. Serotonin-, norepinephrine-, dopamine-reuptake inhibitors (SNDRIs) represent a class of potent, wide-spectrum antidepressant medications that inhibit the reuptake of these neurotransmitters back into presynaptic cells. Inhibiting neurotransmitter reuptake can increase the amount of neurotransmitter present in the synapse, thus helping to normalize the transmission of neuronal signals and alleviate the symptoms of depression and related anxiety disorders.
SUMMARY
The invention relates to amine compounds as well as methods and materials involved in modulating neurotransmitter reuptake. Specifically, the invention provides amine compounds, methods for synthesizing amine compounds, and methods for inhibiting neurotransmitter reuptake. The amine compounds provided herein can be used as potent, wide-spectrum antidepressant medications for inhibiting neurotransmitter reuptake and treating anxiety disorders. In addition, the methods provided herein for synthesizing amine compounds allow for synthesis in a reliable and efficient manner.
In general, the invention features a composition containing N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine. The N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine can contain (2R,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine or (2S,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine. The N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine can contain (2R,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine or (2S,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine. The N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine can contain (a) two compounds selected from the following group: (2R,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, (2S,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, (2R,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, and (2S,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine; (b) three compounds selected from the following group: (2R,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, (2S,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, (2R,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, and (2S,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine; or (c) (2R,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, (2S,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, (2R,3S)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine, and (2S,3R)-N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine. The composition can contain a pharmaceutically acceptable carrier. At least about 35 percent of the composition (e.g., at least about 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 99 percent of the composition) can be the N-methyl-3-hydroxy-2-(2′-naphthyl)-3-phenylpropylamine.
In another embodiment, the invention features a composition containing N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine. The N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine can contain (2R,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine or (2S,3S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine. The N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine can contain (2R,3S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine or (2S,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine. The N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine can contain (a) two of the compounds selected from the following group: (2R,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, (2S, 3 S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, (2R,3S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, and (2S,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine; (b) three of the compounds selected from the following group: (2R,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, (2S,3S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, (2R,3S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, and (2S,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine; or (c) (2R,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, (2S,3S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, (2R,3S)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine, and (2S,3R)-N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine. The composition can contain a pharmaceutically acceptable carrier. At least about 35 percent of the composition (e.g., at least about 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 99 percent of the composition) can be the N-methyl-3-hydroxy-4,4-dimethyl-2-(2′-naphthyl)pentylamine.
Another embodiment of the invention features a composition containing 3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine. The 3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine can contain (2R,3R)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine or (2S,3S)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine. The 3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine can contain (2R,3S)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine or (2S,3R)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine. The 3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine can contain (a) two compounds selected from the following group: (2R,3R)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine, (2S,3S)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine, (2R, 3S)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine, and (2S,3R)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine; (b) three compounds selected from the following group: (2R,3R)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine, (2S,3S)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine, (2R,3S)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine, and (2S,3R)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine; or (c) (2R,3R)-3-hydroxy-4-methyl-2-(2′-naphthyl)pentylamine, (2S,3S)-3-hydroxy-4-m
Carlier Paul R.
Richelson Elliott
LandOfFree
Amine compounds and inhibiting neurotransmitter reuptake does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Amine compounds and inhibiting neurotransmitter reuptake, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amine compounds and inhibiting neurotransmitter reuptake will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3212755