Surgery – Controlled release therapeutic device or system – Implanted dynamic device or system
Reexamination Certificate
2001-01-22
2004-05-25
Bockelman, Mark (Department: 3762)
Surgery
Controlled release therapeutic device or system
Implanted dynamic device or system
C604S151000
Reexamination Certificate
active
06740075
ABSTRACT:
FIELD OF THE DISCLOSURE
This invention relates generally to electronically controlled ambulatory medical systems that include an ambulatory medical device and a hand held microprocessor controlled communication device with enhanced user friendliness including enhanced display/patient notification features, safety features, and/or medical device programming/communication features. Preferred embodiments relate to implantable infusion pumps and external devices for communicating therewith.
BACKGROUND
Implantable infusion pumps for dispensing controlled volumes of a drug (e.g. insulin) have been proposed and even attempts at implementation and commercialization made.
One such pump is the MMT2001 Implantable Pump System as sold by Minimed Inc. of Northridge, Calif. This device presented the user with the ability to perform basic infusion actions such as the delivery of a basal rate, delivery of a temporary basal rate, or the delivery of a meal bolus. The user was, however, not presented with the ability to perform more sophisticated delivery related operations that may be desirable for optimum control of blood glucose level. When using this system three delivery options exist: (1) delivery of a standard but programmable basal rate, (2) delivery of a standard basal rate and a meal bolus simultaneously, or (3) delivery of a temporary basal rate either immediately or at a programmable start time within a specifiable start time. In this system not only could a meal bolus and a temporary basal rate not occur at the same time, they could not be programmed into the system when the other was already programmed but delivery not yet completed even though no overlap in delivery between the two amounts might exist. As such the user could only program one variable rate into the system at a time, even in the event that several variable rates may be desired to follow one another. As such, this system is less than optimal with regard to user convenience in programming his/her insulin treatment.
The system also suffered from an external controller that was large, hard to carry and awkward to use. The controller dimensions are 6.0 inches by 3.5 inches by 1.3 inches with a display that is a small fraction of the size of the face of the controller. The controller included a cover plate that would close over the display area when not in use and would be opened during use. More particularly, during programming the cover plate is opened at a ninety-degree angle relative to the front of the display to allow viewing of the display and to allow positioning of the cover plate immediately over the site of the infusion pump so that successful telemetry communication may occur. As such the system does not supply delivery or system status related information to the user except at the times that the user elects to open and turn on his/her controller.
The system further suffers from the inability of the implantable device to send out unsolicited telemetry messages to the controller concerning operational conditions within the implantable device. As such, system conditions within the implantable device (other than communication related failures) are primarily conveyed to the user via an auditory alarm that is internal to the implantable device.
The system further suffers from the entire operational history of the pump being subject to loss as this historical data is only held in the controller.
The system further suffered from a relatively short life for the implantable device of approximately 2.5 years.
Based on the above noted shortcomings, and other shortcomings of systems in the field, a need exists for improved systems that offer enhanced programming capabilities, enhanced user interface capabilities, reduced controller size, enhanced operational performance, enhanced security of system/patient historical data, enhanced safety features, and/or enhanced implantable device life.
It is believed that related shortcoming may exist in other ambulatory medical devices as well, such as in externally carried infusion pumps, implantable pacemakers, implantable defibrillators, implantable neural stimulators, implantable physiological sensors, externally carried physiologic sensors, and the like.
SUMMARY OF THE INVENTION
It is a first object of certain aspects of the invention to enhance programming capabilities for ambulatory medical systems and in particular for implantable infusion pump systems.
It is a second object of certain aspects of the invention to enhance user interface capabilities in ambulatory medical systems and in particular for implantable infusion pump systems.
It is a third object of certain aspects of the invention to reduce system size for patient convenience in ambulatory medical systems and in particular for implantable infusion pump systems.
It is a fourth object of certain aspects of the invention to enhance operational performance of ambulatory medical systems and in particular for implantable infusion pump systems.
It is a fifth object of certain aspects of the invention to enhance security of system/patient historical data.
It is a sixth object of certain aspects of the invention to enhance the operational safety of ambulatory medical systems and in particular of implantable infusion pump systems.
It is a seventh object of certain aspects of the invention to enhance longevity of ambulatory medical systems and in particular of implantable infusion pump systems.
Other objects and advantages of various aspects of the invention will be apparent to those of skill in the art upon review of the teachings herein. The various aspects of the invention set forth below as well as other aspects of the invention not specifically set forth below but ascertained from the teachings found herein, may address the above noted objects or other objects ascertained from the teachings herein individually or in various combinations. As such, it is intended that each aspect of the invention address at least one of the above noted objects or address some other object that will be apparent to one of skill in the art from a review of the teachings herein. It is not intended that all, or even a portion of these objects, necessarily be addressed by any single aspect of the invention even though that may be the case with regard to some aspects.
A first aspect of the invention provides a medical system that includes (a) an ambulatory medical device (MD) that includes MD electronic control circuitry that further includes at least one MD telemetry system and at least one MD processor that controls, at least in part, operation of the MD telemetry system and operation of the medical device, wherein the medical device is configured to provide a treatment to a body of a patient or to monitor a selected state of the body; and (b) a communication device (CD) that includes CD electronic control circuitry that further includes at least one CD telemetry system and at least one CD processor that controls, at least in part, operation of the CD telemetry system and operation of the communication device, wherein the CD telemetry system sends messages to or receives messages from the MD telemetry system, wherein the communication device weighs no more than about 10 oz and includes a CD housing having a volumetric size smaller than 20 cubic inches.
A second aspect of the invention provides a medical system that includes (a) an ambulatory medical device (MD) that includes MD electronic control circuitry that further includes at least one MD telemetry system and at least one MD processor that controls, at least in part, operation of the MD telemetry system and operation of the medical device, wherein the medical device is configured to provide a treatment to a body of a patient or to monitor a selected state of the body; and (b) a communication device (CD) that includes CD electronic control circuitry that further includes at least one CD telemetry system and at least one CD processor that controls, at least in part, operation of the CD telemetry system and operation of the communication device, wherein the CD telemetry system sends messages to
Chong Colin A.
Choy David Y.
Lebel Ronald J.
Lord Peter C.
Meadows Paul M.
Bockelman Mark
Foley & Lardner LLP
Medtronic Minimed Inc.
LandOfFree
Ambulatory medical apparatus with hand held communication... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ambulatory medical apparatus with hand held communication..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ambulatory medical apparatus with hand held communication... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3228224