Surgery – Diagnostic testing
Reexamination Certificate
2001-01-22
2003-07-01
Nasser, Robert L. (Department: 3754)
Surgery
Diagnostic testing
C600S345000, C600S347000, C600S365000
Reexamination Certificate
active
06585644
ABSTRACT:
FIELD OF THE DISCLOSURE
This invention relates generally to ambulatory medical systems that include a medical device and a control device that communicate via telemetry and that initiate message reception during predefined listening periods. Preferred embodiments relate to implantable infusion pumps and external devices for communicating therewith.
BACKGROUND
Various ambulatory medical devices have been proposed and a number of such devices are commercially available. These devices include, for example, implantable infusion pumps, externally carried infusion pumps, implantable pacemakers, implantable defibrillators, implantable neural stimulators, implantable physiological sensors, externally carried physiologic sensors, and the like.
As appropriate operation of ambulatory medical devices may be critical to those patients being treated using those devices, and as telemetry communications between ambulatory medical devices and controllers can greatly enhance the convenience of using such devices, or even be an enabling necessity to the use of such devices (e.g. implantable devices with sophisticated functionality), the operation of such medical devices can benefit significantly by use of telemetry systems and protocols that have features/elements that lead to optimization of various attributes. Such attributes may include (1) flexibility in communicating the wide variety signals that may be useful to controlling and retrieving information from a sophisticated medical device, (2) robustness in distinguishing actual signals from noise, (3) robustness in distinguishing valid signals from corrupt signals, (4) robustness in ascertaining when appropriate communication has occurred and when additional communication must be attempted, (5) a reasonable efficiency in communication time, and/or (6) a reasonable efficiency in electrical power consumption associated with conveying information over the telemetry system.
Implantable medical devices typically operate by battery power. The batteries may or may not be rechargeable. Higher consumption of power from an implantable medical device containing non-rechargeable batteries leads to a shortening of the usable life of the device and an associated increased frequency of surgery, potential pain, recovery, and inconvenience. Higher consumption of power from an implantable medical device containing rechargeable batteries leads to more frequent charging periods for the batteries and associated inconvenience and may lead to an overall shortening of the usable life of the device. As such, whether or not an implantable medical device contains rechargeable batteries or non-rechargeable batteries, it is desirable to lower the power consumption of the device. As telemetry reception and transmission are highly energy consumptive, it is desirable to minimize the operation time of telemetry reception and transmission modules.
A telemetry reception module of a first device needs to (1) be powered to listen for potential incoming messages from a second device, (2) stay powered during the entire receipt of the message, and (3) potentially be powered one or more repeated times to receive a duplicate message when the second device is expecting a response to its original message and does not receive one. A telemetry transmission module of a first device needs to (1) be powered so it can transmit a desired message to a second device, and (2) potentially be powered one or more times to retransmit a duplicate message when the first device fails to receive confirmation that original message was received by the second device.
A need exists in the field for improved telemetry features/elements that tend to minimize one or both of power on time for telemetry reception modules and/or telemetry transmission modules to reduce power drain on batteries used in powering ambulatory medical devices and communicators. A need exists in the field to ensure that device users are not inconvenienced with long delay times that may be associated with inputting information into the communication device, transmitting information via telemetry to the medical device, and waiting for confirmation that the transmitted information was appropriately received and is was or will be appropriately acted upon.
SUMMARY OF THE INVENTION
It is a first object of certain aspects of the invention to reduce power consumption in an ambulatory medical system associated with receiving messages via telemetry.
It is a second object of certain aspects of the invention to reduce power consumption in an ambulatory medical system associated with transmitting messages via telemetry.
It is a third object of certain aspects of the invention to shift power consumption burdens associated with telemetry activities away from an implantable medical device to an external communication device.
It is a fourth object of certain aspects of the invention to achieve enhanced synchronization between timers in the medical device and in the communication device than is inherently achieved based on frequency oscillation tolerance differences allowed in the principle oscillators used in the two devices.
Other objects and advantages of various aspects of the invention will be apparent to those of skill in the art upon review of the teachings herein. The various aspects of the invention set forth below as well as other aspects of the invention not specifically set forth below but ascertained from the teachings found herein, may address the above noted objects or other objects ascertained from the teachings herein individually or in various combinations. As such, it is intended that each aspect of the invention address at least one of the above noted objects or address some other object that will be apparent to one of skill in the art from a review of the teachings herein. It is not intended that all, or even a portion of these objects, necessarily be addressed by any single aspect of the invention even though that may be the case with regard to some aspects.
It is a first aspect of the invention to provide a medical system that includes (a) an ambulatory medical device (MD) that includes MD electronic control circuitry that further includes at least one MD telemetry system and at least one MD processor that controls, at least in part, operation of the MD telemetry system and operation of the medical device, wherein the medical device is configured to provide a treatment to a body of a patient or to monitor a selected state of the body; and (b) a communication device (CD) that includes CD electronic control circuitry that further includes at least one CD telemetry system and at least one CD processor that controls, at least in part, operation of the CD telemetry system and operation of the communication device, wherein the CD telemetry system sends messages to or receives messages from the MD telemetry system, wherein the CD telemetry system listens during preselected outbound listening periods for at least a selected type of message from the MD telemetry system.
In a specific variation of the first aspect of the invention, the medical device is capable of initiating communication with the communication during outbound listening periods, and the communication device additionally includes (a) a CD clock system; (b) CD monitoring system that monitors a CD time, based on the CD clock system, that corresponds to a selected portion of a message received by the CD telemetry system from the MD telemetry system; and (c) a CD control system for effectively comparing the CD time to an anticipated outbound transmission start time by the MD telemetry system for that selected portion of the message to adaptively adjust a subsequent outbound listening period based, at least in part, on the comparison of the CD time to the anticipated outbound transmission start time.
In another variation of the first aspect of the invention, the MD telemetry system activates a window for receiving messages from the CD telemetry system during prescribed inbound listening periods and wherein successive prescribed inbound listening periods are separated by a smalle
Armstrong John T.
Dennard Robert C.
Lebel Ronald J.
Richert John D.
Shahmirian Varaz
Foley & Lardner
Mallari Patricia C.
Medtronic Minimed Inc.
Nasser Robert L.
LandOfFree
Ambulatory medical apparatus and method using a telemetry... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ambulatory medical apparatus and method using a telemetry..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ambulatory medical apparatus and method using a telemetry... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3108177