Ambulatory medical apparatus and method using a robust...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S903000, C600S300000, C604S891100

Reexamination Certificate

active

06687546

ABSTRACT:

FIELD OF THE DISCLOSURE
This invention relates generally to ambulatory medical systems that include a medical device and a control device that communicate via telemetry and more particularly to devices that exchange messages using a robust telemetry protocol. Preferred embodiments relate to implantable infusion pumps and external devices for communicating therewith.
BACKGROUND
Various ambulatory medical devices have been proposed and a number of such devices are commercially available. These devices include, for example, implantable infusion pumps, externally carried infusion pumps, implantable pacemakers, implantable defibrillators, implantable neural stimulators, implantable physiological sensors, externally carried physiologic sensors, and the like.
Numerous electronic devices exist that communicate with one another using electromagnetic radiation of various wavelengths and of various formats. These electronic devices can act as sources of interference that can negatively impact other devices that also need to communicate via telemetry. This is particularly true when other devices attempt to communicate using small signal strengths that are typically associated with the limited power that is available to ambulatory medical devices and most particular to ambulatory devices that are implanted within the body of a patient.
As appropriate operation of medical devices may be critical to those patients being treated using those devices, and as telemetry communications between medical devices and external controllers can greatly enhance the convenience of using such devices, or even be an enabling necessity to the use of such devices (e.g. implantable devices with sophisticated functionality), the operation of such medical devices can benefit significantly by use of telemetry systems and protocols that have features/elements that lead to optimization of various attributes. Attributes of interest may vary with circumstance but some attributes of general interest include (1) flexibility in communicating the wide variety signals that may be useful to controlling and retrieving information from a sophisticated medical device, (2) robustness in distinguishing actual signals from noise, (3) robustness in distinguishing valid signals from corrupt signals, (4) robustness in ascertaining when appropriate communication has occurred and when additional communication must be attempted, (5) a reasonable efficiency in communication time, and/or (6) a reasonable efficiency in electrical power consumption associated with conveying information over the telemetry system.
For example, implantable infusion pumps are generally configured to accept infusion commands from an external communication device via an RF telemetry system, or the like. These commands may be used, inter alia, to set program variables that are in turn used in defining the quantity and/or timing that is used in supplying a drug to the patient. As the dispensing of appropriate amounts of the drug may be critical to the patient's well being, it is desirable that a reliable and trustworthy communication channel exist between the external communication device and the implantable device so that messages from the external communication device requesting drug delivery are received with integrity, confirmation of accurate reception acknowledged in a rapid manner, and minimal electric power consumption occurring in the entire process of listening for a message, receiving the message, and transmitting a response to the message that is appropriately received by the external communication device.
Implantable medical devices typically operate by battery power. The batteries may or may not be rechargeable. Higher consumption of power from an implantable medical device containing non-rechargeable batteries leads to a shortening of the usable life of the device and an associated increased frequency of surgery, potential pain, recovery, and inconvenience. Higher consumption of power from an implantable medical device containing rechargeable batteries leads to more frequent charging periods for the batteries and associated inconvenience and may lead to an overall shortening of the usable life of the device. As such, whether or not an implantable medical device contains rechargeable batteries or non-rechargeable batteries, it is desirable to lower the power consumption of the device. As telemetry reception and transmission are highly energy consumptive, it is desirable to minimize the operation time of telemetry reception and transmission modules. As such it is desirable to ensure that message length is kept to a minimum and that repeated transmissions and attempted receptions of previously sent but unsuccessfully received messages be kept to a minimum.
A need exists in the field for improved telemetry features/elements that tend to optimize each of the above noted attributes individually, with out consideration of the impact on other attributes, or tend to simultaneously optimize groups of selected attributes, or tend to provide a balance between various ones of the attributes.
SUMMARY OF THE INVENTION
It is a first object of certain aspects of the invention to enhance the ability to communicate a wide variety signals that are useful in controlling and retrieving information from an ambulatory medical device.
It is a second object of certain aspects of the invention to enhance the robustness of distinguishing actual signals from when receiving telemetry communications in an ambulatory medical system.
It is a third object of certain aspects of the invention to enhance the robustness of distinguishing valid signals corrupt signals when receiving telemetry communications in an ambulatory medical system.
It is a fourth object of certain aspects of the invention to enhance the robustness of ascertaining when appropriate communication has occurred and when additional communication must be attempted in an ambulatory medical system.
It is a fifth object of certain aspects of the invention to decrease the time that is spent in transmitting and receiving messages using a telemetry system in an ambulatory medical system.
It is a sixth object of certain aspects of the invention to decrease the electrical power consumption associated with conveying a given amount of information via telemetry in an ambulatory medical system.
Other objects and advantages of various aspects of the invention will be apparent to those of skill in the art upon review of the teachings herein. The various aspects of the invention set forth below as well as other aspects of the invention not specifically set forth below but ascertained from the teachings found herein, may address the above noted objects or other objects ascertained from the teachings herein individually or in various combinations. As such, it is intended that each aspect of the invention address at least one of the above noted objects or address some other object that will be apparent to one of skill in the art from a review of the teachings herein. It is not intended that all, or even a portion of these objects, necessarily be addressed by any single aspect of the invention even though that may be the case with regard to some aspects.
A first aspect of the invention provides a medical system that includes (a) an ambulatory medical device (MD) that includes MD electronic control circuitry that further includes at least one MD telemetry system and at least one MD processor that controls, at least in part, operation of the MD telemetry system and operation of the medical device, wherein the medical device is configured to provide a treatment to a body of a patient or to monitor a selected state of the body; and (b) a communication device (CD) that includes CD electronic control circuitry that further includes at least one CD telemetry system and at least one CD processor that controls, at least in part, operation of the CD telemetry system and operation of the communication device, wherein the CD telemetry system sends messages to or receives messages from the MD telemetry system, wherein at least a portion of the m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ambulatory medical apparatus and method using a robust... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ambulatory medical apparatus and method using a robust..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ambulatory medical apparatus and method using a robust... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.