Ambulatory distributed recorders system for diagnosing...

Surgery – Diagnostic testing – Via monitoring a plurality of physiological data – e.g.,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S523000, C600S534000, C600S483000

Reexamination Certificate

active

06306088

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to physiological monitoring devices. More particularly, this invention relates to two or more site-specific recorders and the method for monitoring, recording and analyzing the medical disorders of a fully ambulatory subject.
2. Description of the Related Art
The diagnosis of sleep disorders often involves polysomnopgraphy (PSG), the monitoring and recording over an extended period of time of the temporal variations in the amplitude of the patient's sleep-impacted, physiological parameters, including: heart rate, eye blink activity, airflow rate, thorax and abdomen respiration rates, the blood's oxygen saturation level, electroencephalograms (EEG), electrooculorgrams (EOG), and electromyograms (EMG). Such intensive monitoring activities are typically conducted in clinical settings by trained PSG technicians who utilize expensive monitoring equipment having multiple sensors that are tethered to a centralized recording system and power supply.
For several decades, the recordings of such physiological parameters were provided by strip chart recorders that produced long strips of paper with ink markings that displayed the varying physiological parameters. The clinician would then examine such records and “score” each abnormal sleep event that occurred. This practice continues today with the clinician now viewing computer screens displaying the varying physiological parameters.
More recently, a number of portable recording systems for screening and diagnosing sleep disorders have been marketed. These systems range from multi-channel, PSG-style systems to much simpler units that monitor only one or more of the possible physiological parameters of interest. However, these multi-channel, portable systems remain technically complex, expensive and usually require trained PSG technicians to supervise their use. The complexity of the tethered sensors and electrode wires that are used with these multi-channel, portable systems is shown in FIG.
1
.
Some of the newer of these portable systems offer comprehensive software for display and analysis of the collected sleep data, and some offer automatic sleep event scoring. However, such scoring has been found to have varying degrees of reliability due to the technical problems associated with assuring good signal fidelity in the monitored parameters. Thus, all of these systems recommend for accurate identification of abnormal sleep events that the data be interpreted and evaluated by experienced clinicians or trained PSG technicians.
The nature of PSG signal fidelity problems is seen in
FIG. 2
which shows the tracings provided by the manufacturer of the portable system shown in
FIG. 1
for the temporal variations in airflow and respiration sensors located respectively at the patient's (1) mouth and nasal passageway, (2) chest, and (3) abdomen. Both the chest and abdomen sensors show poor signal fidelity and the abdomen signal is amplitude clipped and distorted. The two respiration signals are time shifted about five percent, while the airflow signal is shifted about fifteen percent.
Since PSG scoring is largely subjective, experienced scorers can generally interpret with good accuracy the action and interactions of poorly shaped and time skewed signals. Although these distortions are commonly accepted as normal for manual scoring, such poor fidelity signals would be unsatisfactory for automated or computer-based scoring.
All of the current, portable sleep testing systems share common, less-than-desirable features for home use: (1) they are bedside portable, but their size and weight does not allow the patient to be ambulatory, which can be essential for diagnosing patients problems such as excessive sleepiness, (2) they are not designed for unattended use—a technician must come to the home for set-up, disconnection and data retrieval, (3) patients must be outfitted with an array of tethered electrode wires and sensors for connection to bulky body monitors or table-top consoles, and (4) most require subjective analysis of the data by highly trained, sleep professionals.
Recognizing the need for an improved apparatus or method for diagnosing of the various medical conditions of a fully ambulatory subject who exhibits temporal variations in various physiological parameters as a result of this medical condition, it is therefore a general object of the present invention to provide a novel method and ambulatory, distributed recorders system to meet such needs.
SUMMARY OF THE INVENTION
The present invention is generally directed to satisfying the needs set forth above and the problems identified with physiological parameter monitoring systems. The problems, of having to harness the to-be-monitored subject to laboratory recording equipment and the monitor's insufficient response capabilities to the data being collected, are resolved by the present invention.
In accordance with one preferred embodiment of the present invention, the foregoing need can be satisfied by providing a method for aiding in the diagnosis of the medical condition of a fully ambulatory subject who exhibits temporal variations in various physiological parameters as a result of said medical condition, the method comprising the steps of (1) locating a separate, self-contained, recording unit on a plurality of selected measurement sites of the subject, wherein these recording units are each battery operated and have a physiological parameter sensor with appropriate signal conditioning and filtering circuitry to yield required levels of signal fidelity., a programmable controller with an analog to digital converter and an integrated data storage recorder, (2) using these units to collect sensor output data that quantifies the temporal variations in the physiological parameter of interest at each measurement site, (3) sampling this sensor output data at prescribed time intervals, (4) time stamping and storing this sampled data in the integrated recorders, (5) transferring this data via a smart input/output interface device that controls the flow of data between the recorders and an external computer, while allowing for the time synchronization of the collection of data with these units, and (6) using the external computer with application software to analyze and display the temporal variations in the data for the purpose of diagnosing the medical condition of the subject.
In another preferred embodiment, the present invention is seen to take the form of an ambulatory, distributed recorders system. It comprises several, separate, miniature, self-contained, recording units which may be located at various body sites where specific physiological parameters are to be monitored. Each such unit contains a recorder and power supply, wherein one or more sensors for the desired physiological parameter to be monitored are integrated into the recorder.
Various embodiments of the present invention are created when such systems are directed at diagnosing various medical conditions which call for the monitoring of differing physiological parameters, and thus the use of various types of sensors and recorder units. Additionally, it should be noted that the nature of the present invention is open ended, in that other distributed recording units, such as: (1) an ambulatory pulse oximeter unit worn on the wrist with a corresponding finger probe for measuring and recording both oxygen saturation of the blood (SaO2) and pulse rate, (2) a head gear apparatus with attached, non-tether EEG electrodes and an integral recording device for measuring electroencephalogram signals of the brain, (3) an EMG recorder configuration with attached, non-tethered electrodes for electromyographic recording of muscle activity at various locations of the body, (4) a self-contained, accelerometer-based movement recording device worn on the limbs or other body sites to measure tremor frequency and the power components of body movements for disorders such as Parkinson's Tremor, Essential Tremor, Tartive Dyskin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ambulatory distributed recorders system for diagnosing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ambulatory distributed recorders system for diagnosing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ambulatory distributed recorders system for diagnosing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2617658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.