Aluminum-silicon alloy formed from a metal powder

Specialized metallurgical processes – compositions for use therei – Compositions – Consolidated metal powder compositions

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C419S028000, C419S039000, C419S042000, C419S060000

Reexamination Certificate

active

06332906

ABSTRACT:

TECHNICAL FIELD
The present invention lies in the art of metallurgy, and more specifically in the field of alloy compositions produced by powder metallurgy. In particular, the invention is directed to articles formed from aluminum-silicon alloys having a defined microstructure.
BACKGROUND OF THE INVENTION
Various techniques for forming high performance metal alloys by powder metallurgy are known. Generally, these techniques involve forming a metal powder or particulate by atomizing a melt of the alloy, and then cooling the atomized alloy stream to effect solidification. Oftentimes, this process results in an alloy having a microstructure unachievable using more conventional techniques such as casting. It is thus possible to produce alloys having unusual physical properties.
Various applications might benefit from the improved physical properties afforded by metal powder materials. One of these applications is memory disk drives used in computers, commonly referred to as “hard disks” or simply “disk drives.” Disk drives are formed of multiple parallel spaced disks each having a metallic substrate, usually nickel plated aluminum, with a magnetic coating. In use, the disks are rotated at high speeds, and an actuator arm scans over each disk to read and write digital programming.
Disk performance (i.e., memory capacity and read/write speed) is a function of the disk rotational speed. The faster the disks rotate, the greater the performance. Much effort has therefore been focused on the goal of increasing the disk speed.
However, achievement of this goal has been elusive. Currently, the upper limit on disk speed is approximately 7200 rpm using the industry standard 5000 series (5XXX) monolithic aluminum disk substrate. This upper limit is dictated by practical limitations on the amount of flutter permissible. Flutter is a phenomenon whereby the revolving disk begins to wobble above a certain rotational speed. If severe enough, flutter will result in the disk impacting against the actuator arm, which in turn may damage the disk and cause the disk drive to break down or “crash.” Minimal flutter is therefore a prerequisite for preventing disk drive crashes and/or allowing higher disk speeds.
Several factors contribute to flutter. One is resonance caused by the interaction of the natural frequency of the disk and its rotational speed. The higher the natural frequency, the higher the rotational speed possible without resonance. The easiest way to increase the natural frequency of the disk, and hence “shift” the resonance point to a higher rotational speed, is to increase disk stiffness. Another factor influencing flutter is disk unevenness. Generally, the more uneven the disk surface, the greater the amount of wobble or flutter at a given rotational speed.
Hence, two desirable attributes of a metallic disk material are high stiffness and the ability to be highly machined and polished to a flat surface, thereby providing a high natural frequency and smooth surface finish. Furthermore, flutter can be attenuated by dampening factors contributed by composite materials. A ceramic material incorporated into a matrix (e.g. aluminum) provides a dampening factor which is a function of the interfacial surface area of the particles and the matrix. As the interfacial surface area increases, so does the dampening factor.
Various metal alloys and composite materials are known to have increased stiffness compared to monolithic aluminum. For several reasons, however, these materials are not wholly satisfactory for use in computer disks. For example, it is known to manufacture disks of silicon carbide or boron carbide in an aluminum matrix alloy. These composite materials are very stiff, having a modulus of about 14-30 msi. However, they are also very difficult to grind and polish to obtain a flat surface. Grinding rates are dramatically reduced compared to those for monolithic aluminum when using conventional grinding apparatus. This alone makes silicon carbide and boron carbide alloys impractical for commercial use in manufacturing computer disks. Another problem with polishing known prior art alloy materials is the hardness of the discontinuous phase. Grinding quickly dulls cutting tools and results in galling of the aluminum matrix. In addition, boron carbide or silicon carbide particles are literally pulled out of the aluminum matrix at the grinding surface, resulting in increased surface porosity.
In addition to minimizing flutter, a highly polished surface is necessary for proper coating of the substrate disk with a nickel plating. Without a highly polished surface, the plating will not be uniform. Gaps formed in the plating due to the lack of uniformity cause the subsequently applied magnetic coating to have imperfections, which in turn interfere with disk function.
A prior art process for forming metal alloyed memory disks is disclosed in U.S. Pat. No. 5,554,428. This patent teaches an aluminum alloy having various alloying elements such as zinc, copper, and dispersoid-forming elements of which scandium is one example. Disks are formed using casting and rolling.
U.S. Pat. No. 5,437,746 relates to a process for forming an aluminum alloy sheet which employs forming the aluminum alloy into an ingot or continuously cast thin sheet coil, followed by optional hot rolling, cold rolling and punching the alloy to produce a blank disk. The alloy includes magnesium, zinc, and copper.
The disks formed by these processes suffer from many of the disadvantages noted above. Hence, there remains a need in the art for a method for forming a disk having high stiffness and superior polishing characteristics. It would further be advantageous to manufacture actuator arms and various other components of a disk drive form the same or similar high stiffness alloy.
SUMMARY OF THE INVENTION
It is accordingly an aspect of the invention to provide an article formed from an aluminum powder alloy having high stiffness.
It is another aspect of the invention to provide an article formed from an aluminum powder alloy having grindability and polishing characteristics similar or superior to monolithic aluminum.
It is yet another aspect of the invention to provide an article formed from an aluminum powder alloy having platability characteristics similar to monolithic aluminum.
It is still another aspect of the invention to provide a memory disk substrate having the above characteristics of stiffness, grindability and platability, which can be polished and plated using conventional apparatus designed for use with monolithic aluminum.
It is yet another aspect of the invention to provide a memory disk substrate having a dampening factor which attenuates flutter.
It is still another aspect of the invention to provide a memory disk substrate capable of forming a memory disk with the ability to spin at up to 12,000 rpm or greater with a flutter of 10 Å or less.
It is yet another aspect of the invention to provide an actuator arm for a computer disk drive having stiffness characteristics similar to the above memory disk.
These aspects and others set forth hereinbelow, are achieved by an extruded article formed by a process comprising the steps of (a) forming particulates comprising from about 20 to about 40% by weight silicon, up to 4% by weight magnesium and the balance aluminum, the particulates having a particle size of from about 18 to about 35 microns which comprises a microstructure of silicon particles of from about 1 to about 10 microns in a continuous aluminum phase, (b) compacting the particulates in a mold, (c) subjecting the compacted particulates to a vacuum of less than about 10 torr of pressure, to remove air and other gaseous material from between the particulates in the mold, (d) isostatically compressing the particulates at a pressure of at least about 30,000 psi and at a temperature of less than about 100° C., thereby forming a green billet, (e) vacuum sintering the billet under a vacuum of less than about 100 torr of pressure and/or an inert gas environment at a temperature less than that which substantially ef

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aluminum-silicon alloy formed from a metal powder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aluminum-silicon alloy formed from a metal powder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aluminum-silicon alloy formed from a metal powder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2561611

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.