Aluminium processing apparatus and process for separating...

Specialized metallurgical processes – compositions for use therei – Processes – Process control responsive to sensed condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S386000, C075S672000, C266S078000, C266S080000, C266S091000, C266S157000, C266S227000

Reexamination Certificate

active

06767382

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an aluminium processing apparatus for separating aluminium from a mixture of aluminium and aluminium dross, and to a related process for separating aluminium from a mixture of aluminium and aluminium dross. In particular, the invention relates to a process for recycling aluminium from dross produced during an aluminium melting processes, and to an aluminium processing apparatus for carrying out that recycling process.
BACKGROUND OF THE INVENTION
When aluminium is melted eg. for manufacture of extrusions, ingots and billets, because of the influence of oxygen from environmental air on the aluminium and the existence of impurities, particularly oxides, nitrides and carbides, in the molten aluminium, a layer of sludge, also known as dross rises to the surface of the molten aluminium. This layer of dross has to be removed from the molten aluminium before the molten aluminium can be cast. This is done by the use of a ladle in a rather crude process, known as skimming, in which the ladle is dragged across the top of the molten aluminium and the dross is scraped into a suitable receptacle. During the skimming process, as well as removing sludge including oxides and other impurities, pure aluminium is also removed. The quantity of pure aluminium removed depends on the depth to which the ladle is inserted in the aluminium to ensure removal of all the dross and to a large extent depends on the skill of the furnace worker handling the ladle. However, typically 30 to 60% of the mixture/dross, by weight is aluminium.
The term dross, as used herein, refers to the impurities such as oxides which float to the surface of the molten aluminium, but the term is also used in the art to refer to the mixture of aluminium and the impurities.
Because of the amount of aluminium in the mixture, it is obviously desirable to remove as much aluminium from the dross/aluminium mixture as possible. Almost all recycling is currently carried out using a process known as rotary salt furnace processing. In that process, the dross containing pure aluminium is first allowed to cool. The longer the aluminium spends hot, the more oxidation occurs and less aluminium is recovered in the recycling process, so often cooling is encouraged and accelerated. In some cases some initial separation of aluminium from the mixture is first carried out by one of two rather inefficient devices know as drain pans and dross presses, respectively. In the former the mixture is allowed to sit while molten and some of the aluminium will sink to, and agglomerate in, the bottom of the pan. In the latter, the mixture is compressed and the aluminium droplets tend to stick together. U.S. Pat. No. 5,788,918 to Bramely discloses one example of a dross press. These processes are inefficient and have to be followed by rotary salt processing or other methods of external dross processing. Because the mixture is kept hot longer for the drain pan or dross press process, the recovery rate in the subsequent rotary salt process is reduced, so drain pans and dross presses are generally not commercially viable, and are not often used.
Recycling is not generally done at the furnace, but is usually is done by specialist metal-recycling companies. In the rotary salt recycling process, the dross is heated and remelted and various salts and fluxes are added in order to separate the aluminium from the oxides and other impurities. While the process is highly efficient in terms of the quantity of aluminium removed from the dross, removing approximately 85% of the available aluminium, the waste products from the recycling process, ie the mixture of salts and the oxides, is unpleasant, very environmentally unfriendly, and difficult to dispose of safely. Further, the process requires the transporting of the dross to the recycler in trucks or the like which is also undesirable from an environmental point of view, and inefficient in terms of fuel. Also, the dross has to be remelted in order to extract the aluminium in the recycling process which requires a substantial amount of energy. There are some smelting plants which have their own rotary salt recycling furnace, however, the process of cooling and transporting the cooled mixture to the furnace remains the same, although savings are made in total transport costs.
Proposals have been made for separating aluminium from dross in the past. GB 1533696 and U.S. Pat. No. 3,689,049 disclose two different devices for separating aluminium from dross. Neither device has had any commercial success, perhaps because they are over-complicated and too unreliable for the extreme environment in which they have to operate.
The present inventor has also invented an apparatus and process, disclosed in AU 56260/98, and Greek patent No 97-0100106 that provides a simpler and more cost effective method of recycling aluminium from dross. The present invention is directed to improvements to the apparatus earlier developed by the inventor.
SUMMARY OF THE INVENTION
In a first aspect of the present invention there is provided an aluminium processing apparatus for separating molten aluminium from a mixture of molten aluminium and aluminium dross comprising:
a table for supporting an insulated crucible, the crucible having an open top for containing the mixture of molten aluminium and aluminium dross;
vibration means for vibrating the crucible when supported on the table;
a frame adapted to support a paddle means, means for rotating the paddle means and means for relatively lowering the paddle means into the mixture in the crucible for stirring the mixture with the paddle means, the paddle means comprising a plurality of tines having a generally triangular cross section with a ridge of the triangular cross section being uppermost in use when lowered into the crucible;
a shroud adapted to cover the top of the crucible and maintain an oxygen reduced atmosphere in the crucible; and
a screening means comprising walls mounted to the frame which substantially surround the crucible when it is supported by the table, the screening means having at least a portion thereof movable between at least a first retracted position to allow access to the crucible and at least a second position where it prevents access to the crucible; wherein simultaneous vibration of the crucible by the vibration means and stirring of the mixture by the tines is enabled with the tines moving through the dross in a shearing action mixing and tumbling the mixture and causing the droplets of aluminium to coalesce.
The tines are removably attached to the rotatable plate for cleaning or repair.
The shroud may be formed from a heat insulating material and may be located adjacent the rotatable means to be lowered with the paddle means to cover the crucible in use.
The screening means can be removably mounted to the frame. In this embodiment, the movable portion may comprise a door that is retractable to allow access to the table of the apparatus. The door can be adapted to move upwardly, sidewards or downwardly to provide a portal for access to the table. The door can be slidably movable relative to the remainder of the screening means. In another embodiment, the door can be pivotally mounted to the wall. When the door is fully retracted, the portal must be of sufficient size to allow the crucible to pass through the portal.
In another embodiment, the entire screening means can be movable between the first retracted position and the second position. In this embodiment, the screening means can extend downwardly from the lowering means for the paddle means and is so movable relative to the table and crucible in concert with the operation of the lowering means.
The screening means is preferably adapted to prevent or at least ameliorate the escape of heat from the vicinity of the crucible. By preventing the escape of heat, the screening means serves to protect workers working near the apparatus. It also serves to slow the rate of cooling of the crucible and its contents which is desirable. The screening means can also preferably be adapted to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aluminium processing apparatus and process for separating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aluminium processing apparatus and process for separating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aluminium processing apparatus and process for separating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3207804

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.