Alphavirus RNA replicon systems

Chemistry: molecular biology and microbiology – Virus or bacteriophage – except for viral vector or...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4353201, 435236, C12N 700, C12N 701, C12N 704

Patent

active

06156558&

ABSTRACT:
The present invention provides a helper cell for expressing an infectious, replication defective, alphavirus particle in an alphavirus-permissive cell. The helper cell includes (a) a first helper RNA encoding (i) at least one alphavirus structural protein, and (ii) not encoding at least one alphavirus structural protein; and (b) a second helper RNA separate from the first helper RNA, the second helper RNA (i) not encoding the alphavirus structural protein encoded by the first helper RNA, and (ii) encoding the at least alphavirus one structural protein not encoded by the first helper RNA, such that all of the alphavirus structural proteins assemble together into alphavirus particles in the cell. Preferably, the helper cell also includes a replicon RNA encoding an alphavirus packaging sequence and an inserted heterogeneous RNA.

REFERENCES:
patent: 4650764 (1987-03-01), Temin et al.
patent: 5091309 (1992-02-01), Schlesinger et al.
patent: 5185440 (1993-02-01), Davis et al.
patent: 5217879 (1993-06-01), Huang et al.
patent: 5505947 (1996-04-01), Johnston et al.
patent: 5639650 (1997-06-01), Johnston et al.
patent: 5643576 (1997-07-01), Johnston et al.
patent: 5739026 (1998-04-01), Garoff et al.
patent: 5766602 (1998-06-01), Xiong et al.
patent: 5789245 (1998-08-01), Dubensky et al.
patent: 5792462 (1998-08-01), Johsnton et al.
patent: 5814482 (1998-09-01), Dubensky, Jr. et al.
patent: 5843723 (1998-12-01), Dubensky, Jr. et al.
patent: 6015694 (2000-01-01), Dubensky et al.
Hodgson et al, Am. J. Trop. Med. Hyg. 49[3 suppl.]:195-196, 1993.
N.L. Davis et al., Attenuating Mutations in the E2 Glycoprotein Gene of Venezuelan Equine Encephalitis Virus: Construction of Single and Multiple Mutants in a Full-Length cDNA Clone, Virology 183 20-31 (1991).
Davis et al, A Genetically Engineered Live Virus Vaccine for Venezuelan Equine Encephalitis; J. Cell Biochemistry Supplement O No. 17 Part D, issued 1993, Abstract N404.
R.J. Schoepp and R.E. Johnston, Directed Mutagenesis of a Sindbis Virus Pathogenesis Site; Virology 193, pp. 149-159 (1993).
J.M. Polo and R.E. Johnston, Attenuating Mutations in Glycoproteins E1 and E2 of Sindbis Virus Produce a Highly Attenuated Strain When Combined in Vitro, Journal of Virology 64 No. 9, pp. 4438-4444 (1990).
P.J. Bredenbeek et al, Sindbis Virus Expression Vectors: Packaging of RNA Replicons by Using Defective Helper RNAs, Journal of Virology 67 No. 11, pp. 6439-6446 (1993).
Liljestrom et al., A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon, Bio/Technology, vol. 9, Dec. 1991, pp. 1356-1361.
Strauss et al., The Alphaviruses: Gene Expression, Replication, and Evolution, Microbiological Reviews, Sep. 1994, pp. 491-562.
Russell et al., Sindbis Virus Mutations Which Coordinately Affect Glycoprotein Processing, Penetration, and Virulence in Mice, Journal of Virology, vol. 63, No. 4, Apr. 1989, pp. 1619-1629.
Morgenstein et al, Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line, Nucleic Acids Research 18:No. 12, pp. 3587-3596 (1990).
Suomalainen et al., Spike Protein-Nucleocapsid Interactions Drive the Budding of Alphaviruses, J. Virology, vol. 66, No. 8, pp. 4737-4747 (1992).
Davis et al, Virology 212:102-110 (1995).
Grieder et al., Specific Restrictions in the Progression of Venezuelan Equine Encephalitis Virus-Induced Disease Resulting from Single AminoAcid Changes in the Glycoproteins, Virology, 206, pp. 994-1006 (1995).
Lemm et al., Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulations of minus- and plus-strand RNA synthesis, The EmBO Journal, vol. 13, No. 12, pp. 2925-2934 (1994).
Frolov et al., Alphavirus-based expression vectors: Stategies and applications, Proc. Natl. Acad. Sci. USA, vol. 93, pp. 11371-11377 (1996).
Corsini, et al.: Efficiency of Transduction by Recombinant Sindbis Replicon Virus Varies Among Cell Lines, Including Mosquito Cells and Rat Sensory Neurons, BioTechniques, 21:3 (492-497), Sep. 1996.
Simpson, et al., Complete Nucleotide Sequence and Full-Length cDNA Clone of S.A.AR86, a South African Alphavirus Related to Sindbis.sup.1, Virology 222 (464-469) Article No. 0445, 1996.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Alphavirus RNA replicon systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Alphavirus RNA replicon systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Alphavirus RNA replicon systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-960626

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.