All fiber DWDM multiplexer and demultiplexer

Optical waveguides – With optical coupler – Input/output coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S042000, C385S043000, C385S126000, C359S199200, C359S199200, C359S199200

Reexamination Certificate

active

06453094

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of fiber optic components and, more particularly, to optical multiplexers and demultiplexers.
2. Discussion of the Prior Art
The dense wavelength division multiplexed (DWDM) optical fiber communication systems of today rely heavily upon the simultaneous launching of many optical signals, each at a respectively different wavelength, into a given fiber in order to efficiently utilize as much of the available bandwidth of that fiber as possible. The optical multiplexer/demultiplexer (Mux/Demux), also commonly referred to as a WDM or DWDM filter, is a key component of such optical systems. As will be readily appreciated by those skilled in the art, a multiplexer is used to combine optical signals of different wavelengths into a single fiber so that they may be transmitted efficiently to a remote location. Conversely, a demultiplexer separates the respective wavelength signals propagating along a single fiber so that, for example, each of the optical signals may be individually processed. Optical transmission system architects have always been concerned with maintaining an adequate system power margin in order to ensure an acceptable signal to noise ratio and low bit error rate at the desired rate of transmission. As the number of wavelengths to be added to and/or dropped from each optical fiber link has continued to increase, the need for a scalable Mux/Demux solution having low associated insertion losses has become more important than ever.
The three general types of DWDM filters principally used today are thin-film filters, arrayed waveguide gratings (AWG) and fiber Bragg gratings used in conjunction with an optical circulator. In each of these three general types of DWDM filters, optical energy or light is removed from the fiber and is either collimated into a free space light beam or redirected into a specially configured waveguide. The principal disadvantage of these DWDM filter structures is the high losses associated with moving optical energy out of the fiber and refocusing the light back into the fiber. A further disadvantage of such filters is the need for adherence to strict mechanical tolerances and the attendant vulnerability to vibration and environmental changes. In view of these disadvantages, substantial investigative effort has been directed toward the development of a filter configuration that keeps the optical energy inside the fiber. Such a configuration is generally referred to as an “in-line” filter.
One in-line filter approach, applicable to single-mode fiber, is described by F. Bilodeau et al. in
IEEE Photonics Technology Letters
, Vol. 7. pp. 388-390 (1995). The device described by Bilodeau et al. is essentially an optical channel add/drop filter based on two Bragg gratings defined in the arms of two concatenated 3 dB fused fiber couplers. The position of the two identical gratings must be accurately controlled to provide in-phase reflection in the two arms of each coupler. This interferometric arrangement requires path length trimming during device fabrication, and the precise optical phase must be maintained during the device lifetime.
Another “in line” add/drop filter implementation is proposed by F. Bakhti et al. in
Electron. Letters
, Vol. 33, pp. 803-804 (1997). The structure proposed by Bakhti et al. requires that a fiber grating be written onto the “waist” or narrowly tapered portion of a fused coupler. The position of the grating related to the coupler is critical in the structure proposed by Bakhti et al. Unfortunately, the difficulty associated with realizing the precise alignment of the grating has rendered manufacture of the Bakhti et al. structure commercially impractical.
A more recent approach to the heretofore unsatisfied need for an “in line” filter is described by B. Ortega et al. in IEEE Journal of Lightwave Technology, Vol. 17, 1, pp. 123-128 (1999). The filter proposed by Ortega comprises a twin core fiber and single core fiber, a mixed fused tap coupler, and a fiber Bragg grating. Inside the tap coupler coupling range, there are three modes exhibited by the single core fiber, the twin core fiber's high effective refractive index and numeric aperture (NA) core and the twin core fiber's lower effective refractive index and NA core, respectively. According to theoretical analysis and experimental evaluation by the inventors herein, for the kind of tap coupler employed by Ortega, the high NA core mode and single core mode can be easily and efficiently coupled to each other, but the low NA core mode will be affected by the cladding mode, causing at least a three (3) db (50%) loss of optical power.
Accordingly, a continuing need exists for an in-line DWDM filter which is characterized by a repeatable, low level of insertion loss. A further need exists for a DWDM filter structure which is commercially practicable to manufacture.
SUMMARY OF THE INVENTION
The aforementioned needs are addressed, and an advance is made in the art, by an all-fiber, in line filter structure comprising a dual core fiber fused coupler and a dual core fiber grating. Essentially, the dual core fiber fused coupler of the present invention comprises at least one multiple core optical fiber and one other optical fiber. According to an especially preferred embodiment of the present invention, two dual core optical fibers are employed since these may be easily manufactured during the same production run, and under the same processing conditions, so that variations which would otherwise result in a mismatch of optical characteristics between the respective fibers sections of the coupler are substantially avoided. In this way, reliable and repeatable insertion loss performance may be readily achieved. However, provided certain fiber selection and fabrication steps are observed, it is also possible to employ a coupler having a dual core fiber fused to a single core fiber in the construction of DWDM filters according to the present invention.
Where two multiple core fiber structures are employed in the coupler, each multiple core fiber has a first core with a first effective index of refraction and a first propagation constant and a second core with a second effective index of refraction and a second propagation constant. The first and second multiple core fibers are aligned and fused together such that the second core of the first multiple core fiber is in sufficient proximity to the second core of the second multiple core fiber as to obtain overlapping mode fields and efficient coupling of propagating optical signals therebetween, while the first core of the first multiple core fiber is sufficiently separated from the first core of the second multiple core fiber as to obtain weak or substantially no coupling of propagating optical signals therebetween.
In accordance with an illustrative embodiment of the present invention, the respective first core of each corresponding multiple core fiber extends along a longitudinal, geometric central axis of the corresponding multiple core fiber, while the respective second core of each corresponding multiple core fiber extends along a longitudinal fiber axis offset from a geometric central axis of said corresponding multiple core fiber. The effective index of refraction of each respective first core is lower than an effective index of refraction of a corresponding second core.
An illustrative filter device constructed in accordance with the present invention is obtained by defining, in the second core of one of the multiple core fibers, a fiber Bragg grating. Illustratively, this may be achieved by making the second core, but not the first core, sensitive to incident ultraviolet radiation, such that the grating may be formed by photolithographic pattern definition and UV exposure. To accommodate an all optical add or drop functionality, as in DWDM multiplexers and demultiplexers, respectively, the period of the fiber Bragg grating is selected to efficiently couple an optical signal at a corresponding selected wavelen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

All fiber DWDM multiplexer and demultiplexer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with All fiber DWDM multiplexer and demultiplexer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and All fiber DWDM multiplexer and demultiplexer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2906774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.