ALIPHATIC COPOLYMER, PRODUCTION PROCESS, ALIPHATIC POLYESTER...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S354000, C523S201000, C524S035000, C524S275000, C524S539000, C527S311000, C428S048000, C071S064070

Reexamination Certificate

active

06509440

ABSTRACT:

TECHNICAL FIELD
No. I of the present invention relates to aliphatic polyesters having a controlled thermal decomposition property, hydrolyzability, and biodegradability, and a method for the preparation thereof. In more detail, it relates to aliphatic polyesters which comprise polymerizing a cyclic ester monomer using a monoalcohol as an initiator, aliphatic polyesters in which terminal groups are modified, and a method for the preparation thereof.
Further, No. II of the present invention relates to a particle-state fertilizer coated by a degradable thin layer which comprises a biodegradable terminal-controlled aliphatic polyester which comprises a monomer unit of at least any one of a lactone and lactide, in which proportion of the number of an alcohol-terminal is not more than 50% and/or proportion of the number of a carboxylic acid-terminal is not more than 30%.
Still further, No. III of the present invention relates to a particle-state fertilizer coated by a degradable thin layer which comprises a biodegradable cyclic ester-modified cellulose ester.
The thin layer to be employed for the particle-state fertilizer of the present invention is decomposed by microorganisms in soil, and it does not finally remain in soil. Further, in the thin layer, a variety of additives and chemicals can be added for adjusting elution of the particle-state fertilizer.
Also, No. IV of the present invention relates a base film for a marking film which comprises resins primarily containing a specified cellulose ester-based derivative. In more detail, it relates to a base film for a marking film which comprises resins primarily containing a specified cellulose ester derivative in which a cyclic ester is ring-opening graft-polymerized.
Also, No. V of the present invention relates a heat-sensitive transfer picture image recording material. In more detail, it relates to a heat-sensitive transfer picture image recording material having an excellent strippability from a heat-transfer sheet containing a sublimatable dye, in which concentration of coloration is high and, in which there can be formed a recorded picture image having an excellent brightness, and relates to a method for the preparation thereof.
Also, No. VI of the present invention relates a heat-sensitive transfer recording material and, in more detail, it relates to a heat-sensitive transfer recording material in which there are not caused a sticking phenomenon and a blocking phenomenon, and which is excellent in storage stability and printing quality.
Also, No. VII of the present invention relates a conductive coating composition. In more detail, it relates to a conductive coating composition which comprises a mixture of a resin for a conductive coating containing a cellulose ester derivative obtained by a ring-opening graft-polymerization of cyclic esters to a cellulose ester having hydroxy groups with a conductive pigment composed of a mixture consisting of a conductive carbon black and a scaly graphite.
Also, No. VIII of the present invention relates a moisture-curable graft copolymer which is useful as a coating for car parts, construction, and repairing, and relates to a coating composition containing thereof.
And also, No. IX the present invention relates a lactide/lactone copolymer and a method for the preparation thereof and, in more detail, it relates a lactide/lactone copolymer in which an average continuous chain length is controlled in respective units of the copolymer, and relates to a method for the preparation in which an average continuous chain length can be freely controlled in respective units of the copolymer.
TECHNICAL BACKGROUND
(The No. I of the Present Invention)
In recent years, treatment of waste plastics is becoming a social problem, and recycling of plastics material and biodegradable plastics are paid attention. An aliphatic polyester resin is one of materials which are largely desired owing to biodegradability.
As one of the aliphatic polyester resins which are industrially produced, a polycaprolactone is known. A polycaprolactone having a low molecular weight is an important material as a raw material for a polyurethane, a paint, and a coating agent. A polycaprolactone having a high molecular weight is employed as a molded article such as a compost bag, fishing lines, tees for golf, and a hot-melt adhesive, etc. owing to biodegradability.
Further, the aliphatic polyester has been widely employed as a preferred material also in uses such as a use for molding various portions of human body and a use by fitting to human body. For example, a gyps for medical care (JP-A-58081042 Official Gazette) and a face mask for irradiating radiation rays (JP-A-60215018 Official Gazette) have been known.
It is known that although such the aliphatic polyester has a peculiar thermally-decomposing property, hydrolyzability, and biodegradability, etc., respectively, in the case of the uses, thermally-decomposing property, hydrolyzability, and biodegradability, decomposition or degradation rate become important depending upon the uses thereof, accordingly, their properties can be modified by various copolymerization.
For example, the thermally-decomposing property, hydrolyzability, and biodegradability of the aliphatic polyesters are controlled by a copolymerization of a lactone with a lactide, a copolymerization of a lactone with a glycolide, a copolymerization of a lactone with a carbonate, a copolymerization of a lactone with a cyclic ester, a copolymerization of a lactone with a lactam and, or modification of composition ratio, etc.
Still further, in a polycondensation type polyester, it is tried to highly-polymerize by an isocyanate compound (JP-A-04189823 and JP-A-05178955 Official Gazettes). However, since a polymer having a sufficiently high molecular weight can be obtained without a crosslinking reaction in the aliphatic polyester which is obtained by the ring-opening polymerization such as in the present invention, there was not investigated a reaction with an isocyanate compound, etc.
In the case of controlling the thermally-decomposing property, hydrolyzability, and biodegradability of the aliphatic polyesters, although there can be obtained a polymer having a desired thermally-decomposing property, hydrolyzability, and biodegradability by copolymerization, there is a problem that the copolymerization also affects to various other physical properties, resulting in that there cannot be obtained a target polymer.
(The No. II of the Present Invention)
Hitherto, for the purpose of manifestation of a fertilizing effect depending upon growth of farm products, there have been developed various fertilizing effect-controllable fertilizers.
Particularly, there have been disclosed and commercially-supplied a particle-state fertilizer in which a coating material is coated on the surface. As described in JP-B-95000505 Official Gazette, there have been proposed various fertilizing effect-controllable fertilizers in, for example, U.S. Pat. No. 3,295,950, JP-B-65028927, JP-B-69028457, GB Patent 815829, JP-B-62015832 and JP-B-67013681 Official Gazettes. However, it is taught that it is difficult to adjust an elution rate of fertilizing components in all the fertilizing effect-controllable fertilizers.
On the other hand, JP-B-85021952 and JP-B-85003040 Official Gazettes disclose a method for forming a thin layer in which there is employed a coating material primarily containing a polyolefin, and in the case of coating the surface of particle-state fertilizers, a hot air is blown to dry together with spraying a solution of the coating material over the particle-state fertilizers. It is taught that the method is characterized in that an elution rate of the fertilizers can be controlled, and the above-described method is widely put into practice, in which a thin layer is formed over the surface of the particle-state fertilizers.
Further, JP-B-85003040 and JP-A-55901672 Official Gazettes, etc. show that a function for controlling elution is maintained by dispersing inorganic powders such as talc and sulphur into a thin layer of the polyole

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

ALIPHATIC COPOLYMER, PRODUCTION PROCESS, ALIPHATIC POLYESTER... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with ALIPHATIC COPOLYMER, PRODUCTION PROCESS, ALIPHATIC POLYESTER..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ALIPHATIC COPOLYMER, PRODUCTION PROCESS, ALIPHATIC POLYESTER... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3057001

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.