Alignment method and exposure apparatus using the same

Optics: measuring and testing – By alignment in lateral direction – With registration indicia

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S399000

Reexamination Certificate

active

06636311

ABSTRACT:

FIELD OF THE INVENTION AND RELATED ART
This invention relates to an alignment method and an exposure apparatus using the same, usable in the manufacture of semiconductor devices, for example, for relatively aligning a fine electronic circuit pattern, such as ICs, LSIs or VLSIs, formed on the surface of a reticle (first object), with a wafer (second object). More specifically, the invention is concerned with an alignment method and an exposure apparatus particularly effectively arranged to perform an alignment operation in a situation wherein a WIS (Wafer Induced Shift), which is a wafer process error, occurs easily.
Projection exposure apparatuses for semiconductor manufacture should have a performance for projecting a circuit pattern of a reticle onto a wafer at a higher resolution, to meet further increases in the density of an integrated circuit. The projection resolving power for a circuit pattern can be increased by enlarging the numerical aperture (NA) of a projection lens while keeping the wavelength of exposure light fixed, or by shifting the exposure light to a shorter wavelength, e.g., from g-line to i-line or from i-line to an excimer laser, for example.
On the other hand, with further miniaturization of a circuit pattern, the requirement for high-precision alignment between a reticle, having an electronic circuit pattern formed thereon, and a wafer has become more strict.
In the reticle-to-wafer alignment, there are cases using exposure light with which a resist applied to the wafer surface is sensitive and cases using non-exposure light (e.g., 633 nm wavelength from a He—Ne laser) not sensitizing the wafer resist. Currently, in most cases, non-exposure light is used in practice. This is because of the advantage that non-exposure light is less influenced by semiconductor manufacturing processes. Particularly, since the transmission factor of the resist is high, wafers can be observed independently of the resist characteristic.
The assignee of the subject application has proposed alignment systems using non-exposure light, such as in Japanese Patent Application Laid-Open No. 32303/1988 and Japanese Patent Application Laid-Open No. 130908/1990.
The alignment technique such as above is called a non-exposure light TTL off-axis system, and in such a system, chromatic aberration to be caused as non-exposure light passes a projection optical system, for projecting a reticle pattern onto a wafer, is corrected by an alignment optical system.
In most alignment methods currently used in practice, an optical image of an alignment mark on a wafer is imaged upon an image pickup device such as a CCD camera, and an electrical signal obtainable thereby is image-processed, whereby the position of the wafer is detected.
Currently, there are exposure apparatuses of a type called a stepper, and exposure apparatuses of a type called a scanner. The following description will be made of a stepper type exposure apparatus, as a representative example.
The non-exposure light TTL off-axis method based on image processing can be used in an i-line stepper, but it cannot be used in an excimer stepper using an excimer laser as a light source. This is because a projection optical system when used with light having a wavlength of 633 nm which is an emission wavelength of a He—Ne laser, for example, produces a very large chromatic aberration, and the correction thereof through an alignment optical system cannot be done with a high NA (numerical aperture).
For this reason, most excimer steppers use a detection system of the non-exposure light off-axis type based on an image processing method wherein, as compared with the conventional non-exposure light off-axis system, a separate off-axis microscope is provided so that observation can be made with non-exposure light, without intervention of a projection optical system.
The non-exposure light off-axis system is a non-TTL off-axis system, rather than a TTL (Through The Lens) system, wherein a projection optical system is not passed through. Thus, any change in the distance between the off-axis microscope and the projection lens, that is, baseline, is a factor of precision deterioration.
In order to suppress the change in baseline to attain high-precision alignment, it is necessary to use in the non-exposure light off-axis system those components which are less thermally influenced or to perform baseline correction frequently.
The non-exposure light TTL off-axis system in an excimer stepper may use a method other than the image processing method. An example other than the image processing method is a dark-field detection method wherein illumination light is not detected and only limited diffraction light is used. A method called “heterodyne detection” may apply.
In the non-exposure light TTL off-axis method wherein limited diffraction light is detected, since the baseline is short, inconveniences involved in the non-TTL non-exposure light off-axis system may be avoided. However, because of the dark-field detection, a problem may arise in the detection rate as compared with a bright-field detection.
In current device production, an appropriate one of the image processing methods and other detection methods described above is selected and used, in consideration of their advantages and disadvantages peculiar to them, to meet the required alignment precision.
However, in order to meet a recent requirement for further improvement in alignment precision, there still remain some problems in relation to a semiconductor process error, which cannot be solved by any of the above-described methods.
A large problem is that there is no measure to compensate for a phenomenon that the shape of an alignment mark becomes asymmetrical due to a process or processes.
An example is a flattening process such as in a metal CMP process or the like. In the CMP process, the structure of an alignment mark may become asymmetrical, which may cause in a global alignment procedure a rotational error (
FIG. 1A
) or a magnification error (FIG.
1
B). This results in a serious problem of decreased precision.
The distortion in the structure of a wafer alignment due to the flattening process may produce a larger error in the dark-field detection system, causing a precision decrease. Therefore, although the stability of the baseline can be accomplished by non-exposure light TTL off-axis system different from one based on the image processing method, because of its higher process sensitivity, it is used in only a few cases in practice.
In order to meet the requirement of miniaturization of ICs, it is important to improve the total overlay precision, including the alignment precision. Recently, particular note has been applied to distortion of a projection optical system when a reticle pattern is transferred to a wafer.
What is to be considered in this respect is variation of distortion due to coma aberration, depending on an illumination mode used or a pattern shape used. Conventionally, the distortion has been defined in relation to the location upon an image plane where a chief ray of light is incident, such that it has been treated as being aberration independent from the NA. However, the asymmetry of an image in practice differs with the NA, due to the influence of non-uniformness of an illumination system or coma of a projection optical system. Since the chief ray does not shift even if the NA is changed, the distortion would not change in accordance with the conventional definition. Nevertheless, an image shifts in practice. This phenomenon, if it occurs, will cause deterioration of the total overlay precision.
The distortion to be treated in the present invention is distortion in a practical sense, also taking into account the asymmetry being variable with the NA, and thus, the definition differs from the conventional one wherein distortion depends on the location on an image plane where a chief ray of light is incident. In this specification, the term “distortion” to be referred to below means the formed distortion wherein the asymmetry variable with the NA is also taken into accoun

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Alignment method and exposure apparatus using the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Alignment method and exposure apparatus using the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Alignment method and exposure apparatus using the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3129147

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.