Alignment method and apparatus for aligning cutting blade

Cutting – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C083S881000, C083S076600, C083S076700, C083S929100, C125S020000, C125S023010

Reexamination Certificate

active

06494122

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an alignment method and apparatus for aligning a cutting blade with a selected street to be cut on a workpiece such as a semiconductor wafer having chip areas defined by a plurality of crossing streets, which are formed on the upper surface of the semiconductor wafer.
2. Related Arts
Referring to
FIG. 7
, a semiconductor wafer has square chip areas C defined by crossing streets S
1
and S
2
, which run in first and second directions to form a lattice pattern on the upper surface of the wafer. Each square chip area has an integrated circuit pattern formed thereon, and the semiconductor wafer is diced to provide square chips C by cutting the crossing streets S
1
and S
2
. Each square chip is packaged, and the so packaged chip can be used in an electronics device.
To meet the recent demand for reducing electronics in size, thickness and weight, chip size packages (abbreviated as CSPs) have been widely used. In the CSP two or more semiconductor chips are laid on each other and bonded together, and the so layered assembly is laid on a printed board having spherical terminals appearing on its rear side. A resin material is molded to the whole structure to provide a single CSP board
100
, as shown in FIG.
8
. The CSP board
100
is diced by cutting the crossing streets S
1
and S
2
to provide packaged devices as large as the semiconductor chip.
In dicing either the semiconductor wafer W and CSP board
100
as shown in
FIGS. 7 and 8
respectively, first, the cutting blade is put in alignment with a selected street, and then said selected street is cut. Thereafter, the cutting blade is shifted a street-to-street distance every time the cutting has been completed. It should be noted that alignment of the cutting blade with a selected street is effected only once at the beginning. This step-by-step indexing mode depends on the assumption that all streets run exactly in parallelism.
As a matter of fact, however, streets are liable to be slant more or less. The parallelism of streets is apt to be lowered particularly in a case where a resin material is molded to the CSP board; the CSP board is apt to be deformed when covered with resin. If the cutting is made by moving the cuffing blade a predetermined street-to-street distance in such case that all streets don't run exactly in parallelism, it may happen that the cutting blade invades the chip area C (see
FIG. 7
) so that the semiconductor device may be damaged.
To avoid such unfavorable incident, it has been proposed that indexing alignment is repeated prior to the cutting of each and every street (see Japanese Patent H09-52227(A)). This, however, takes much time, lowering the productivity accordingly.
Therefore, there has been an ever-increasing demand for dicing semiconductor wafers with precision even though their streets should not run strictly in parallelism.
SUMMARY OF THE INVENTION
To attain this object according to the present invention, in dicing a workpiece having a plurality of chip areas defined by a plurality of streets running and crossing in a first and a second directions and a plurality of alignment spots formed on a surface of the workpiece, the workpiece being diced by a dicing machine including at least a chuck table for fixedly holding the workpiece, the chuck table being rotatable, and being adapted to be put in a controlled angular position; a cutting means having a cutting blade; a feeding means for moving the chuck table and/or the cutting means relative to each other in directions in which required cutting may be effected on the workpiece; and indexing means for moving the chuck table and/or the cutting means a street-to-street distance,
an alignment method for aligning a selected street and the cutting blade with each other, is improved according to the present invention in that it comprises:
a first step of: imaging the surface of the workpiece to detect alignment spots which permit recognition of selected first and second streets running in same direction with at least one street intervening therebetween, determining and storing X- and Y-coordinates of the first and second streets, provided that X-axis is corresponding to a feeding-and-cutting direction whereas Y-axis is corresponding to a feeding-and-indexing direction;
a second step of: determining an angular difference between an inclination of the first street and that of the second street based on the coordinates of the detected alignment spots, obtaining an angle of correction for each street by dividing the angular difference by number of street-to-street spaces existing between the first and second streets, and storing the angle of correction;
a third step of: putting the first and second streets in parallelism with the X-axis to determine the Y-coordinates of intercept of so oriented first and second streets and a distance between the so oriented first and second streets, determining an indexing amount by dividing so determined distance by number of the street-to-street spaces existing between the first and second streets, and storing so determined indexing amount; and
a fourth step of: moving the cutting blade and/or the workpiece in the Y-axial direction based on both of the so determined angle of correction and the indexing amount so that the cutting blade may be put exactly in alignment with a selected street to be cut.
In the first step, at least three alignment spots may be detected for recognizing each of the first and second streets, and the coordinates of the so detected alignment spots are stored;
in the second step, a first linear function representing the first street is determined from the coordinates of the alignment spots for recognizing the first street according to the least squares method; a second linear function representing the second street is determined from the coordinates of the alignment spots for recognizing the second street according to the least squares method; and the angular difference between the inclination of the first street and that of the second street relative to the X-axis is determined from the first and second linear functions; and
in the third step, the first linear function is rotated until the first street has been put in parallelism relative to the X-axis, thereby reducing its angle of inclination to zero, and determining the Y-coordinate of the first street to be the intercept of the so rotated first linear function; and the second linear function is rotated until the second street has been put in parallelism relative to the X-axis, thereby reducing its angle of inclination to zero, and determining the Y-coordinate of the second street to be the intercept of the so rotated second linear function.
The first and second streets may be the opposite outermost streets formed in the workpiece, and the workpiece may be a CSP substrate.
An alignment apparatus to be built in a dicing machine including at least a chuck table for fixedly holding the workpiece, the chuck table being rotatable, and being adapted to be put in a controlled angular position; a cutting means having a cutting blade; a feeding means for moving the chuck table and/or the cutting means relative to each other in directions in which required cuffing may be effected on the workpiece; and an indexing means for moving the chuck table and/or the cutting means a street-to-street distance; the workpiece having a plurality of chip areas defined by a plurality of streets running and crossing in first and second directions and a plurality of alignment spots formed on the surface of the workpiece, is improved according to the present invention in that the alignment apparatus for aligning a selected street and the cutting blade with each other comprises:
an imaging means for taking a picture of the surface of the workpiece, which is fixedly held by the chuck table;
a coordinates detecting-and-storing means for detecting alignment spots which permit recognition of selected first and second streets running in same direction with at least one street intervening

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Alignment method and apparatus for aligning cutting blade does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Alignment method and apparatus for aligning cutting blade, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Alignment method and apparatus for aligning cutting blade will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2990450

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.