Alignment mechanism for a high density electrical connector

Electrical connectors – With indicating or identifying provision – Connection indicating provision

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S712000, C439S677000

Reexamination Certificate

active

06368146

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of electrical connectors and, in particular to a mechanism for aligning an electrical connector such as a coupling for a printed circuit board (PCB) and another electronic component. Specifically, this invention is an alignment mechanism having a sensing device and alignment mechanism which automatically position the electrical connector.
2. Description of the Related Art
In the design of many electronic circuits and components, factors such as space savings and connection integrity are pivotally important. High-density electrical connectors are typically used in a number of electronic applications to conductively join components which contain numerous discrete paths of conductivity to be precisely aligned and joined while maintaining a small connector size. High-density electrical connectors are typically used in the interconnection between packaged integrated circuits (PIC) and printed circuit boards (PCB). In these devices, permanent attachment of one component to another by methods such as soldering may not be desirable due to the inflexibility of the solder connections which are prone to breakage under stress. Furthermore, permanent attachment precludes the desirable ability to disconnect the two components as needed.
Still other applications of high-density electrical connectors can be found in wiring applications where cable, ribbon, or wire bundle arrangements are used to interconnect components within electronic devices which may not be suitable for direct attachment to each other. These wiring arrangements and connectors are likewise configured to be removably attached to one or more of the components which they interconnect. In both of the abovementioned applications, the high-density electrical connector possesses a large number of discrete conductors which must be properly oriented and securely positioned so as to insure connection integrity between the components to be joined.
Conventional pin/socket or plug/receptacle arrangements which are manually positioned, oriented, and joined to provide connectivity between electronic components are inadequate for use in many high-density conductor applications. These connectors are cumbersome to work with and are prone to interconnect failure, breakage, and short-circuiting because of the close proximity of the contacts and fine control over positioning required to achieve sufficient conductivity along all contact points. Furthermore, such connectors are often not suitable for use in applications requiring repeated coupling/uncoupling of the connector and may rapidly become worn resulting in reduced connection efficacy.
In an effort to improve reliability in high-density connection arrangements, various types of connectors have been developed to use thermally responsive electrical elements which employ shape metal alloys (SMA) to secure or release the connector. Using the SMA property of heat induced phase transformation, these connectors typically operate by securing or releasing the connector based on electrical current flow through the alloy. SMA actuated clamps and fasteners for electronic devices have been described for high-density electrical applications and may provide a reversible locking mechanism. Such devices, however, are still subject to the inherent problems of component movement and connection failure should the connection interface be improperly oriented or misaligned. Furthermore, SMA connectors described in the prior art do not provide precise control over the positioning and orientation of the connector interface and suffer from alignment problems associated with manual positioning and attachment. Thus, it is difficult to achieve satisfactory connectivity in high-density connector applications using existing SMA connectors. Additionally, these devices lack a suitable method for detecting the position of the connector which, if known, can be helpful in determining what corrections should be made to the connector position to achieve proper connectivity. These problems are exacerbated in high-density electrical connection applications due to the relatively small size of the connector and the number of contacts which must be made.
From the foregoing, it can be appreciated that there is an ongoing need for a device and method for providing connectivity between electronic components using high-density connection arrangements. Accordingly, there is a need for a device capable of detecting the orientation of a component with a high-density pattern of contacts and making fine adjustments as needed to achieve connection integrity.
SUMMARY OF THE INVENTION
The aforementioned needs are satisfied by the present invention, which in one aspect comprises a high-density electrical connector. The connector comprises a first connector member with a first and second side with a plurality of electrical conductors connected to the first side. A first contact pattern comprising a first plurality of electrical contacts is further defined on the second side of the connector with the electrical contacts connected to the corresponding electrical conductors. The connector allows many electrical conductors to be oriented and positioned in a simultaneous manner using a simplified connector interface. A benefit derived from use of the connector resides in the reduced difficulty in deciphering proper wiring arrangements and conductor orientations. A further benefit of the connector stems from the ability to fashion the connector to occupy a reduced amount of space compared to the amount of space used by traditional electrical connectors.
In the illustrated embodiments, the conductors may comprise wires, cables, or extend from a packaged integrated circuit assembly to be desirably conductively joined to a mounting location or receptacle. The mounting location is further formed on a second connector member having a first surface with a corresponding second contact pattern comprising a second plurality of electrical contacts.
An alignment mechanism engages with the first connector member and the second connector member to precisely align the contact patterns using a sensor assembly and a positioning assembly. The alignment mechanism detects the state of alignment of the connector members through the use of the sensor assembly and further re-positions the connector to insure that the contact patterns of the connector members are desirably conductively joined. In one aspect, the alignment mechanism comprises electronically-actuated pushrod assemblies which generate a bias against the connector sides to align the connector.
Signals generated by the sensor assemblies can be efficiently received and interpreted by a control unit which decodes the current state of alignment of the connector and directs electrical current, corresponding to positioning responses, to the alignment mechanism. The electrical current, received by the alignment mechanism, activates the positioning assembly and alters the bias generated by the pushrod assemblies to result in the lateral and rotational movements of the connector member required to conductively align the contact patterns.
The connector is beneficially used to align high-density contact patterns in an automated manner with an increased degree of precision. The method for precisely aligning the contacts of the contact patterns is initiated by first grossly aligning the contact patterns by positioning the first connector member in proximity to the second connector member. The connector then electrically senses whether the first and second connector members are precisely aligned and electrically induces movement between the connector members in response to the electrical sensing of whether the connector members are aligned.
These and other advantages and features of the present invention will become more fully apparent from the following description and appended claims taken in conjunction with the accompanying drawings.


REFERENCES:
patent: 4621882 (1986-11-01), Krumme
patent: 4743079 (1988-05-01), Bloch
patent: 47

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Alignment mechanism for a high density electrical connector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Alignment mechanism for a high density electrical connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Alignment mechanism for a high density electrical connector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2846060

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.