Alignment mark structure

Active solid-state devices (e.g. – transistors – solid-state diode – Alignment marks

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S401000, C438S462000, C438S975000

Reexamination Certificate

active

06661105

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an alignment mark used in the manufacture of a semiconductor device, and to an aligning method using the alignment mark.
The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2001-115256, filed Apr. 13, 2001, which is herein incorporated by reference in its entirely for all purposes.
2. Description of the Related Art
An exposure apparatus transfers circuit patterns of a plurality of masks to the surface of a semiconductor substrate. Prior to the exposure process, the exposure apparatus identifies an alignment mark formed on the semiconductor substrate and aligns the mask with reference to the alignment mark.
A conventional alignment mark is defined within a rectangular region and includes a plurality of alignment patterns. The alignment patterns are, for example, plural sets of parallel slits where each set consist of three regularly spaced slits. A laser light is diffracted and scattered by the slits and then detected to identify the alignment mark. And, manufacturing process steps of such the slits having a bump are described below.
In the manufacture of the alignment mark, after a coated layer is formed on the semiconductor substrate, the circuit patterns are transferred to the coated layer by a lithography etching process. At the same time, the alignment mark is formed. Then, another coated layer is formed on the semiconductor substrate having the alignment mark formed thereon, and a photo resist is formed on this other coated layer.
At the exposure apparatus, the alignment mark is irradiated by the laser light, and a movement of the laser light is detected in response to a movement of a stage of the exposure apparatus which positions the semiconductor substrate. Then, a reflected light is diffracted and scattered at the three slits of the alignment mark. The reflected light returns through the same light path and then separates. The separated reflected light is detected by a detector of the exposure apparatus. A position of the alignment mark is recognized from a diffracted light which enters into the detector.
The exposure apparatus corrects an exposure position in accordance with a difference between the recognized position of the alignment mark and an origin of the mask.
However, in the conventional alignment mark, a space between the closest slit of the alignment mark to a side of the rectangular region of the alignment mark and the side may be equal to a space between the three regularly spaced slits. In such cases, the exposure apparatus may incorrectly recognize the diffracting and scattering of light arise from the side of the rectangular region of the alignment mark, as a substitute for the diffracting and scattering of light arising from the 3 regularly spaced slits of the alignment mark.
SUMMARY OF THE INVENTION
It is an objective of the invention to provide an alignment mark and an aligning method using the alignment mark so as to assure a highly accurate alignment without incorrectly recognizing the side of the rectangular region of the alignment mark.
To achieve this object, in a semiconductor substrate having an upper layer and an alignment mark structure formed on a surface region of the upper layer, the surface region defined by opposite first and second parallel sides extending along the upper layer, wherein the alignment mark structure comprises, a first outer side wall extending upwardly from the upper layer and extending lengthwise along the first side of the surface region, wherein the first outer side wall is defined lengthwise by alternating first and second wall portions, wherein each of the first wall portions is spaced farther from the first side of the surface region than is each of the second wall portions, a second outer side wall extending upwardly from the upper layer and extending lengthwise along the second side of the surface region, wherein the second outer side wall is defined lengthwise by alternating third and fourth wall portions, wherein each of the third wall portions is spaced farther from the second side of the surface region than is each of the fourth wall portions, and an alignment pattern defined by openings in the alignment mark structure located between the first and second outer side walls
According to the present invention, an exposure apparatus can be prevented from incorrectly recognizing the diffracting and scattering of light arising from a side region of an alignment mark. As such, the alignment mark of the present invention allows for more accurate alignment.
The above and further objects and novel features of the invention will more fully appear from the following detailed description, appended claims and accompanying drawings.


REFERENCES:
patent: 4962318 (1990-10-01), Nishi
patent: 5128283 (1992-07-01), Tanaka
patent: 5847468 (1998-12-01), Nomura et al.
patent: 5859478 (1999-01-01), Hagi
patent: 5929937 (1999-07-01), Hwang
patent: 6037671 (2000-03-01), Kepler et al.
patent: 6140711 (2000-10-01), Machida et al.
patent: 6143622 (2000-11-01), Yamamoto et al.
patent: 6344698 (2002-02-01), Barr et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Alignment mark structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Alignment mark structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Alignment mark structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3156845

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.