Drug – bio-affecting and body treating compositions – Lymphokine – Interleukin
Patent
1992-10-19
1995-09-19
Draper, Garnette D.
Drug, bio-affecting and body treating compositions
Lymphokine
Interleukin
514886, 514 2, 514 8, 514 12, 530351, A61K 4505, A61K 3700, A61K 3710, C07K 1300
Patent
active
054513995
ABSTRACT:
A novel polypeptide [Ala IL-8].sub.77 is provided which is a potent modulator of neutrophil functions. The polypeptide factor and related compositions find use as anti-inflammatory agents and as therapeutics for clinical indications in which damage to vascular endothelium and other tissues occurs. The amino acid and nucleotide sequence of the factor and methods for its purification, recombinant production and pharmaceutical use are provided.
REFERENCES:
patent: 4897348 (1990-01-01), Johnson et al.
patent: 5302384 (1994-04-01), Gimbrone et al.
patent: 5306627 (1994-04-01), Yamada et al.
BACHEM Biosciences Inc., Lymphokine Bulletin Information Sheet, Feb. 1991 (BA 054).
Baggiolini et la., Neutrophil-activating Peptide-1/Interleukin 8, a Novel Cytokine That Activates Neutrophils, J. Clin. Invest. 84:1045-1049 (Oct., 1989).
Clore et al., Determination of the Secondary Structure of Interleukin-8 by Nuclear Magnetic Resonance Spectroscopy, J. Biol. Chem. 264(32):18907-18911 (Nov. 15, 1989).
Dahinden et al., The Neutrophil-Activating Peptide NAF/NAP-1 Induces Histamine and Leukotriene Release By Interleukin 3-Primed Basophils, J. Exp. Med. 170:1787-1792 (Nov., 1989).
Dixit et al., Molecular Cloning of an Endotheilial Derived Neutrophil Chemotactic Factor: Identity with Monocyte Derived Factor, EMBO J. 3:A305, abstract 456 (1989).
Furata et al., Production and Characterization of Recombinant Human Neutrophil Chemotactic Factor, J. Biochem. 106:436-441 (1989).
Gimbrone et al., Endothelial Interleukin-8: A Novel Inhibitor of Leukocyte-Endothelial Interactions, Science 246:1601-1603 (Dec., 1989).
Gregory et al., Structure Determination of a Human Lymphocyte Derived Neutrophil Activating Peptide (LYNAP), Biochem. and Biophys. Res. Comm. 151(2):883-890 (Mar. 15, 1988).
Hechtman et al., Inhibitor of Polymorphonuclear Leukocyte Accumulation at Sites of acute Inflammation, J. Immunol. 147(3):883-892 (Aug. 1, 1991).
Hebert et al., Endothelial and Leukocyte Forms of IL-8, Conversion by Thrombin and Interactions with Neutrophils, Journal of Immunology 145(9):3033-3040 (Nov. 1, 1990).
Kowalski et al., Regulation of the mRNA for Monocyte-Derived Neutrophil-Activating Peptide in Differentiating HL60 Promyelocytes, Molec. and Cell. Biol. 9(5):1946-1957 (May. 1989).
Larsen et al., Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor, Immunology 68:31-36 (1989).
Larsen et al., The Neutrophil-Activation Protein (NAP-1) is Also Chemotactis for T Lymphocytes, Science 243:1464-1466 (Mar., 1989).
Lee et al., Isolation and Characterization of Eight Tumor Necrosis Factor-Induced Gene Sequences from Human Fibroblasts, Mol. Biol. 10:1982-1988 (1990).
Lindley et al., Synthesis and expression Escherichia coli of the gene encoding monocyte-derived neutrophpil-activating factor: Biological equivalence between . . . , PNAS USA 85:9199-9203 (Dec., 1988).
Matsushima et al., Molecular Cloning of a Human Monocyte-Derived Neutrophil Chemotactic Factor (MDNCF) and the Induction of MDNCF mRNA By Interleukin 1 . . . , J. Exp. Med. 167:1883-1893 (Jun. 1988).
Miller et al., Cloning and Expression of a Yeast Ubiquitin-protein Cleaving Activity in Escherichia coli, Bio/Technology 7:698-704 (Jul., 1989).
Modi et al., Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene . . . , Hum. Genet. 84:185-187 (1990).
Mukaida et al., Genomic Structure of the Human Monocyte-Derived Neutrophil Chemotactic Factor IL-8, J. Immunol. 143:1366-1371 (Aug. 15, 1989).
Mullenbach et al., Chemical Synthesis and Expression in Yeat of a Gene Encoding Connective Tissue Activating Peptide-III, J. Biol. Chem. 261(2):719-722 (Jan. 15, 1986).
Schmid et al., Induction of mRNA For A Serine Protease And A .beta.-Thromboglobulin-Like Protein in Mitogen-Stimulated Human Leukocytes, J. Immunol. 139:250-256 (Jul. 1, 1987).
Schroder et al., Secretion of Novel and Homologous Neutrophil-Activating Peptides by LPS-Stimulated Human Endothelial Cells, J. Immunol. 142:244-251 (Jan. 1, 1989).
Schroder, J. M., The Monocyte-Derived Neutrophil Activating Peptide (NAP/Interleukin 8) Stimulates Human Neutrophil Arachidonate-5-Lipoxygenase, But Not . . . , J. Exp. Med. 170:847-863 (Sep., 1989).
Schroder et al., Purification and Partial Biochemical Characterization of a Human Monocyte-Derived, Neutrophil-Activation Peptide That Lacks Inter-. . . , J. Immunol. 139(10):3474-3483 (Nov. 15, 1987).
Strieter et al., Endothelial Cell Gene Expression of a Neutrophil Chemotactic Factor by TNF-.alpha., LPS, and IL-1.beta., Science 243:1467-1469 (Mar. 17, 1989).
Suzuki et al., Localization of chemotactic activity and 64 kD protein phosphorylation for human polymorphonuclear leukocytes in . . . , Biochem. and Biophys. Res. Comm. 163:1298-1305 (Sep. 29, 1989).
Suzuki et al., Purification and Partial Primary Sequence of a Chemotactic Protein For Polymorphonuclear Leukocytes Derived From Human Lung Giant Cell Carcinoma . . . , J. Exp. Med. 169:1895-1901 (Jun., 1989).
Van Damme et al., The chemotactic activity for granulocytes produced by virally infected fibroblasts is identical to monocyte-derived interleukin 8, Eur. J. Immunol. 19:1189-1194 (1989).
Van Damme et al., Purification of granulocyte chemotactic peptide/interleukin-8 reveals N-terminal sequence heterogeneity similar to that of .beta.-thromboglobulin, Eur. J. Biochem. 181:337-344 (1989).
Van Damme et al., A Novel, NH.sub.2 -Terminal Sequence-Characterized Human Monokine Possessing Neutrophil Chemotactic, Skin-Reactive, and Granulocytosis-Promoting . . . , J. Exp. Med. 167:1364-1376 (Apr., 1988).
Wheeler et al., Cultured Human Endothelial Cells Stimulated with Cytokines or Endotoxin Produce an Inhibitor of Leukocyte Adhesion, J. Clin. Invest. 82:1211-1218 (Oct., 1988).
Wheeler et al., Characterization of an Endothelial-Derived Inhibitor of Leukocyte Adhesion, Fed. Proc. 46:758, Abstract No. 2577 (1987).
Wheeler et al., Interleukin-1 Treated endothelial Cells Produce an Inhibitor of Leukocyte-Endothelial Adhesion, Fed. Proc. 46:450, Abstract No. 1725 (1986).
Willems et al., Human granulocyte chemotactic peptide (IL-8) as a specific neutrophil degranulator: comparison with other monokines, Immunol. 67:540-542 (1989).
Yoshimura et al., Neutrophil Chemotactic Factor Produced By Lipopolysaccharide (LPS)-Stimulated Human Blood Mononuclear Leukocytes: Partial Character . . . , J. Immunol. 139(3):788-793 (Aug. 1, 1987).
Yoshimura et al., Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokins, PNAS USA 84:9233-9237 (Dec., 1987).
Yoshimura et al., Three forms of monocyte-derived neutrophil chemotactic Factor (MDNCF) distinguished by Different Lenths of the Amino-Terminal Sequence, Molecular Immunology 26(1):87-93 (1989).
Baker Joffre B.
Gimbrone, Jr. Michael A.
Hebert Caroline A.
Obin Martin S.
Brigham and Women's Hospital
Carlson K. Cochrane
Draper Garnette D.
Genentech Inc.
LandOfFree
[ALA IL-8].sub.77 and [SER IL-8].sub.72 as Leukocyte adhesion in does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with [ALA IL-8].sub.77 and [SER IL-8].sub.72 as Leukocyte adhesion in, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and [ALA IL-8].sub.77 and [SER IL-8].sub.72 as Leukocyte adhesion in will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1826812