Airport vehicle frame assembly used therefore

Land vehicles – Wheeled – Running gear

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S785000, C296S035100

Reexamination Certificate

active

06250679

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to load carrying vehicles for use in an off-roadway setting, and particularly load carrying vehicles of intermediate size used as airport ground support equipment (GSE) or airport transport vehicles.
BACKGROUND OF THE INVENTION
There are a variety of vehicles which exist in the industrial setting for use in hauling loads or heavy components. Of particular popularity are vehicles used in the airport ground support industry for transporting equipment special to that industry. As there are a variety of components for use in the airport ground support industry, it is preferred to have a single vehicle which can support a multitude of such components. These components, or loads, may include, for example, lavatory service tanks, water service tanks, passenger stairs, maintenance lifts, flatbeds, fuel tanks, etc. Use of a vehicle that can handle components of high weight is an important factor, as well as having a vehicle that is durable to withstand the abusive rigors in such an industrial environment.
Vehicles presently used in the GSE industry include those of the variety that are also employed in the on-road environment. Many of the features of on-road vehicles are not attractive for use in the industrial and/or GSE industry. On-road vehicles bring high cost in maintenance, especially those having elaborate systems required for compliance with various standards and regulations for on-road classification. Commonly, manufacturers of on-road vehicles make design modifications year by year, thus requiring an enormous stock of replacement parts for maintenance which adds to the overhead of the airport ground supporter or other industrial user.
In designing on-road vehicles, a focus is on complying with governmental regulations and standards, necessitating use of complex components for specialized fuel, exhaust and ignition systems, microprocessor controlled transmissions, and structural designs to lessen the weight of the vehicle to comply with fuel economy. In doing so, many on-road vehicles incorporate the use of plastic or light gauge sheet metal body components that are susceptible to damage in the industrial environment. Moreover, on-road vehicles require sophisticated and high powered engines to maintain highway velocity, whereas in most industrial and/or airport settings the maximum speed requirement is approximately 20 miles per hour in ramp areas and around aircraft, and 35 miles per hour on outer airport service roads. High power engines are not necessarily needed where transport is about a relatively horizontal surface such as a paved airfield. Many conventional vehicles that are capable of carrying loads in the 5,000 to 9,000 pound range may be too large to fit under aircraft.
Off-road vehicles used in the industrial context are generally extremely large hauling mechanisms or low-weight machines, leaving a substantial void for an intermediate weight transport vehicle. Moreover, in many industrial contexts, and especially the airport GSE industry, it is desirable to have a cab portion for transporting more than a single individual so multiple tasks may be accomplished once the vehicle reaches the desired location. For instance, one worker may load baggage while the other refills tanks or performs some other tasks. Having a cab that is easily accessible and configured to accommodate multiple persons is a desire. Also safely positioning the operators within the cab is important in an industrial setting, especially when common on-road features regarding safety compliance (i.e., airbags, crumple zones, etc.) are not possible, practical, required, contemplated or desired.
The frame or frame assembly of a vehicle used in such off-road environment or GSE setting is an important aspect of the vehicle. Some particular frames as used in vehicles, including frames used in vehicles in on-road environments, generally lack features to accommodate for intermediate load carrying ability in an off-road setting while providing lowered profile, and require complicated or expensive manufacturing. Examples of some such frames include those shown in the following patents: U.S. Pat. No. 1,475,352 to Wales; U.S. Pat. No. 1,872,506 to Sage; U.S. Pat. No. 1,872,671 to Beck, et al.; U.S. Pat. No. 3,534,977 to Wessel; U.S. Pat. No. 4,040,640 to Begg; U.S. Pat. No. 4,386,792 to Moore, et al.; U.S. Pat. No. 5,114,183 to Haluda, et al.; U.S. Pat. No. 5,149,132 to Ruehl; U.S. Pat. No. 5,634,663 to Krupp; U.S. Pat. No. 5,718,048 to Horton, et al. The unique structure of the present frame, however, results in a specially functioned frame for better use in the off-road environment.
Accordingly, among the objects of the present invention is to provide an off-road vehicle which has an intermediate gross vehicle weight capacity; which does not contain sophisticated systems commonly needed for on-road use; which may be configured with a variety of vehicle accessories, including a variety of accessories for airport ground support; which requires low maintenance combined with high-load capacity and maximum configurability; which allows for multiple passenger transport and ease of entry, as well as a low profile for traveling among and beneath other industrial equipment including other airport GSE vehicles and airplanes. Further objects of the present invention include providing a load supporting member and a frame assembly to accommodate the aforementioned objects.
SUMMARY OF THE INVENTION
In accordance with the invention, there is provided an off-road vehicle having a frame for receiving a variety of vehicle accessories, as well as receiving basic engine and drive train systems together with a cab portion. The frame, engine and drive train are adapted to provide the vehicle with an intermediate gross vehicle weight capacity (i.e., between approximately 6,000 and approximately 15,000 pounds). With such capacity, the vehicle can support the designated load even when the accessory is fully loaded. The vehicle is adapted for exclusively off-road operation. As an off-road vehicle, the vehicle will not be used on public roadways, highways, streets, or other travelways requiring certification of various governmental bodies, including the federal government. Avoiding compliance with such standards lessens the cost of purchase and maintenance, while increasing reliability, and simplicity of use. There is provided a vehicle for avoiding elaborate on-road systems while having an intermediate gross vehicle weight capacity together with the ability to support a variety of vehicle accessories. Such vehicle further maintains a low profile for effective ingress and egress of multiple passengers, together with maneuverability among other industrial equipment.
A further aspect of the invention includes a frame assembly for use in an off-road vehicle having an intermediate gross vehicle weight capacity. The frame assembly includes a lowered front-end portion to accommodate the engine and cab system of the off-road vehicle. In a specific embodiment, the frame assembly includes bridging means to bridge together the front-end and the rear-end. Such frame assembly allows for higher rear-end load capacity while allowing for lower front-end profile. The intermediate gross vehicle weight capacity is between approximately 6,000 and 15,000 pounds, with a preferred capacity of approximately 15,000 pounds. A further embodiment incorporates the frame assembly within an off-road vehicle.
Yet a further aspect of the invention includes a load supporting structural member comprising a front portion having a top piece, a side piece having a front height, and a bottom piece. The front portion is adapted for receiving an engine and a cab assembly of an off-road vehicle. The load supporting structural member further includes a rear portion having a top part, a side part having a rear height, and a bottom part. The rear portion is integrally connected to the front portion, and the rear height is greater than the front height. The rear portion is adapted for receiving an accessory of the off-road vehicle. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Airport vehicle frame assembly used therefore does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Airport vehicle frame assembly used therefore, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Airport vehicle frame assembly used therefore will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469750

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.