Airport takeoff window

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Traffic analysis or control of aircraft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S959000, C340S961000, C342S029000

Reexamination Certificate

active

06571167

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a system of controlling aircraft and ground traffic at and near airports.
2. Description of the Related Art
As airport and air traffic congestion become recognized as seriously threatening the future of our aviation transportation system, it is clear that both safety and capacity will receive equal recognition as primarily system design criteria. Runway incursions, defined as any occurrence at an airport involving an aircraft, vehicle, persons, or object on the ground that creates a collision hazard or results in loss of separation with an aircraft taking off, intending to take off, landing or intending to land. It can be said that runway incursions directly impact airport capacity and airport safety.
The problem of reduced airport capacity and reduced airport safety stems primarily from the fact that a majority of airport operations are manually controlled by the control towers, the cockpits, and the radar rooms. There exist a number of human factor considerations which impact airport capacity, such as variable airport controller capability, variable landing intervals, variable pilot response, variable pilot procedures, pilot response in landing on a crossing runway and runway design.
Regarding variable airport controller capability, controllers have different capabilities in handling landings and takeoffs. This difference is more noticeable at airports which experience high demand rates and complex flight situations. With variable landing intervals, differences in personnel capability and procedures lead to significant variation in intervals between landings. Therefore, each landing interval must be appraised on an individual basis, and the opportunity to permit a takeoff between two landings is unique to the controller.
With regard to variable pilot response, studies show that pilots react differently to instructions from the controller. Consequently, any perceived delay to takeoff (controllers will typically associate a quick or delayed response to certain types of aircraft and airlines) must be considered by the controller in any decision to permit a takeoff between landings, or require a hold until a later time. In terms of variable pilot procedures, procedures for initiating takeoff vary between airlines, and thus, the controller must react to a perceived slow reaction or delay by a pilot. Studies further show that, even though the controller may authorize an aircraft for takeoff, pilots are often reluctant to initiate takeoff before an inbound aircraft has traversed the intersection. The unwillingness to initiate takeoff is directly related to the distance between takeoff point and the intersection, and either decreases safety margins or decreases airport capacity.
Moreover, adverse weather, reduced visibility, radio frequency congestion, language ambiguities, and other real-world occurrences add another dimension to the aircraft control problem reducing control effectiveness below the desired level of excellence.
In response to the need to enhance airport safety, there has been a call to implement automated airport control systems. However, these control systems are disadvantageous because they focus primarily on the issue of runway incursion, and thus, are designed to alert the airport controllers when to stop or halt aircraft and/or ground vehicles from entering an active runway. In other words, conventional automated airport control systems indirectly inform the aircraft pilot only when to “stop” or halt ground-based based aircraft and/or vehicles. Secondly, the control systems are disadvantageous since they fail to focus on enhancing both airport safety and airport capacity.
SUMMARY OF THE INVENTION
In view of the foregoing, it is an object of the invention to provide an airport control system for enhancing airport capacity and airport safety.
It is another object of the invention to provide an airport control system for reducing airport runway incursions.
It is further object of the invention to provide an automated airport control system for controlling aircraft and ground traffic at an airport.
It is still another object of the invention to provide an automated airport control system adapted to forecast an optimum time for an aircraft to initiate a takeoff in order to be safely sequenced between successive landings on either crossing/intersecting runways or on the same/single runway.
It is yet another object of the invention to provide an automated airport control system that permits an aircraft takeoff position at an acute angle relative to the runway.
These, as well as other objects are achieved in providing an airport control system which includes a sensing mechanism for sensing a plurality of target conditions, a processing mechanism which receives the target conditions input from the sensing mechanism, and a plurality of visual displays in electronic communication with the processing mechanism which alerts a ground pilot when to “stop” or halt the aircraft in addition to alerting the pilot when to “go” or proceed on the taxiway in response to an electronic signal received from the processing mechanism. Hence, the airport control system in accordance with the present invention is capable of tracking inbound flights at an airport and forecast when each arrival will touchdown and/or cross intersecting runways.
In accordance with the present invention, the sensing mechanism is adapted to track a plurality of target conditions, such as at least one of the following: the position and velocity of inbound aircraft, the time from start of roll to the time of clearing an intersection of the aircraft awaiting takeoff, aircraft configuration (such as aircraft model), atmospheric conditions (i.e., temperature, visibility conditions, wake turbulence conditions, wind direction and velocity, barometric pressure, etc.), runways in use, and the distance from holding area to the intersecting runway. Other target conditions may also be included, such as mode of airport usage, i.e., whether the airports are subject to either takeoffs only, landings only, or interleaved takeoff and landing.
Preferably, land-based surveillance systems, such as radar, or air-based systems including GPS or other on-board navigation systems are provided to sense the target conditions. The system may also forecast, during a takeoff sequence, the time it takes for an aircraft to cross through an intersection. Information for this forecast may be derived from manufacturer performance data for the runway in combination with corrections for wind and temperature for the specific aircraft. Beacon associated techniques, such as the ATCRBS Beacon (ARTS), Bendix trilateration technique, Westinghouse™ interferometer and the MIT Precision Approach and Landing Monitor (PALM) systems may be employed to determine the position and velocity of approaching or inbound aircraft. The time from start of roll to the time of clearing an intersection of the aircraft awaiting takeoff may be determined from the type of aircraft, temperature and wind information. The type of aircraft is typically stored in flight strip information, which may be accessed electronically using a known system. In addition, the time from touchdown until the landing has exited the runway will be determined by the system, preferably by utilizing a manual tower position.
The sensed target conditions will be input into the processing mechanism, such as a computer or the like and includes an electronic controller. The computer preferably includes software capable of calculating the optimum time in which all aircraft awaiting departure may initiate a takeoff sequence based upon the sensed target conditions. The computer preferably includes a storage device adapted to retrievably store therein electronic files of information (i.e., target conditions) used in calculating the optimum take off window. Using a maximum likelihood filter, the computer filters the target condition to output a velocity for each aircraft on final approach to landing and place them in landi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Airport takeoff window does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Airport takeoff window, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Airport takeoff window will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3036096

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.