Airfoil shape for a turbine bucket

Fluid reaction surfaces (i.e. – impellers) – Specific blade structure – Concave surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S22300B, C416SDIG002

Reexamination Certificate

active

06769879

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an airfoil for a bucket of a stage of a gas turbine and particularly relates to a first stage turbine bucket airfoil profile.
Many system requirements must be met for each stage of the hot gas path section of a gas turbine in order to meet design goals including overall improved efficiency and airfoil loading. Particularly, the buckets of the first stage of the turbine section must meet the thermal and mechanical operating requirements for that particular stage.
BRIEF DESCRIPTION OF THE INVENTION
In accordance with the preferred embodiment of the present invention there is provided a unique airfoil shape for a bucket of a gas turbine, preferably the first stage bucket, that enhances the performance of the gas turbine. The present airfoil shape is a modification of a prior airfoil design. Specifically, by reshaping the trailing edge from the prior known design, the present airfoil is unique and not a direct scale of the prior known bucket airfoils. More specifically, cutbacks are applied to the trailing edge of the prior known design, particularly along its entire length, affording a wholly new overall airfoil profile.
The bucket airfoil profile hereof is defined by a unique loci of points to achieve the necessary efficiency, and loading requirements. These unique loci of points define the nominal airfoil profile and are identified by the X, Y and Z Cartesian coordinates of Table I which follows. The 1000 points for the coordinate values shown in Table I are relative to the turbine centerline and for a cold, i.e., room temperature bucket at various cross-sections of the bucket airfoil along its length. The positive X, Y and Z directions are axial toward the exhaust end of the turbine, tangential in the direction of engine rotation and radially outwardly toward the bucket tip, respectively. The X and Y coordinates are given in distance dimensions, e.g., units of inches, and are joined smoothly at each Z location to form a smooth continuous airfoil cross-section. The Z coordinates are given in non-dimensionalized form from 0.05 (5%) span to 0.95 (95%) span. By multiplying the airfoil height dimension, e.g., in inches, by the non-dimensional Z value of Table I, the airfoil shape, i.e., the profile, of the bucket airfoil is obtained. Each defined airfoil section in the X, Y plane is joined smoothly with adjacent airfoil sections in the Z direction to form the complete airfoil shape. The resulting airfoil particularly has a trailing edge cutback as compared with a prior known bucket.
It will be appreciated that as each bucket airfoil heats up in use, the profile will change as a result of mechanical loading and temperature. Thus, the cold or room temperature profile is given by the X, Y and Z coordinates for manufacturing purposes. Because a manufactured bucket airfoil profile may be different from the nominal airfoil profile given by the following table, a distance of plus or minus 0.150 inches from the nominal profile in a direction normal to any surface location along the nominal profile and which includes any coating, defines a profile envelope for this bucket airfoil. The airfoil shape is robust to this variation without impairment of the mechanical and aerodynamic functions of the bucket.
It will also be appreciated that the airfoil can be scaled up or scaled down geometrically for introduction into similar turbine designs. Consequently, the X and Y coordinates in inches and the non-dimensional Z coordinates, when converted to inches, of the nominal airfoil profile given below may be a function of the same constant or number. That is, the X and Y coordinate values in inches, and optionally the Z coordinate values when converted to inches, may be multiplied or divided by the same constant or number to provide a scaled up or scaled down version of the bucket airfoil profile while retaining the airfoil section shape.
In a preferred embodiment according to the present invention, there is provided a turbine bucket including a bucket airfoil having an airfoil shape, the airfoil having a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0.05 span to 0.95 span convertible to Z distances in inches by multiplying the Z values by a height of the airfoil in inches, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape.
In a further preferred embodiment according to the present invention, there is provided a turbine bucket including a bucket airfoil having an uncoated nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0.05 span to 0.95 span convertible to Z distances in inches by multiplying the Z values by a height of the airfoil in inches, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each Z distance, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape, the X and Y distances being scalable as a function of the same constant or number to provide a scaled-up or scaled-down airfoil.
In a further preferred embodiment according to the present invention, there is provided a turbine comprising a turbine wheel having a plurality of buckets, each of the buckets including an airfoil having an airfoil shape, the airfoil having a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0.05 span to 0.95 span convertible to Z distances in inches by multiplying the Z values by a height of the airfoil in inches, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define the airfoil profile sections at each distance Z, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape.
In a further preferred embodiment according to the present invention, there is provided a turbine comprising a turbine wheel having a plurality of buckets, each of the buckets including an airfoil having an uncoated nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0.05 span to 0.95 span convertible to Z distances in inches by multiplying the Z values by a height of the airfoil in inches, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape, the X, Y and Z distances being scalable as a function of the same constant or number to provide a scaled-up or scaled-down bucket airfoil.


REFERENCES:
patent: 5980209 (1999-11-01), Barry et al.
patent: 6450770 (2002-09-01), Wang et al.
patent: 6461110 (2002-10-01), By et al.
patent: 6474948 (2002-11-01), Pirolla et al.
patent: 6503059 (2003-01-01), Frost et al.
patent: 6685434 (2004-02-01), Humanchuk et al.
patent: 6715990 (2004-04-01), Arness et al.
patent: 6722851 (2004-04-01), Brittingham et al.
patent: 6722852 (2004-04-01), Wedlake et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Airfoil shape for a turbine bucket does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Airfoil shape for a turbine bucket, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Airfoil shape for a turbine bucket will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296967

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.