Airfoil shape for a turbine bucket

Fluid reaction surfaces (i.e. – impellers) – Specific blade structure – Radial flow devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416SDIG002

Reexamination Certificate

active

06779977

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an airfoil for a bucket of a stage of a gas turbine and particularly relates to a second stage turbine bucket airfoil profile.
Many system requirements must be met for each stage of the hot gas path section of a gas turbine in order to meet design goals including overall improved efficiency and airfoil loading. Particularly, the buckets of the second stage of the turbine section must meet the operating requirements for that particular stage and also be capable of efficient manufacture.
BRIEF DESCRIPTION OF THE INVENTION
In accordance with the preferred embodiment of the present invention there is provided a unique airfoil shape for a bucket of a gas turbine, preferably the second stage bucket, that enhances the performance of the gas turbine. The airfoil shape hereof improves the interaction between various stages of the turbine, affords improved aerodynamic efficiency and improved second stage airfoil aerodynamic and mechanical loading. The bucket airfoil profile is defined by a unique loci of points to achieve the necessary efficiency and loading requirements whereby improved turbine performance is obtained. These unique loci of points define the nominal airfoil profile and are identified by the X, Y and Z Cartesian coordinates of Table I which follows. The 3600 points for the coordinate values shown in Table I are relative to the turbine centerline and for a cold, i.e., room temperature profile at various cross-sections of the bucket airfoil along its length. The X and Y coordinates are given in distance dimensions, e.g., units of inches, and are joined smoothly at each Z location to form a smooth continuous airfoil cross-section. The Z coordinates are given in non-dimensionalized form from 0 to 1. By multiplying the airfoil height dimension, e.g., in inches, by the non-dimensional Z value of Table I, the airfoil shape, i.e., the profile, of the bucket is obtained. Each defined airfoil section in the X, Y plane is joined smoothly with adjacent airfoil sections in the Z direction to form the complete airfoil shape.
It will be appreciated that as each bucket airfoil heats up in use, the profile will change as a result of stress and temperature. Thus, the cold or room temperature profile is given by the X, Y and Z coordinates for manufacturing purposes. Because a manufactured bucket airfoil profile may be different from the nominal airfoil profile given by the following table, a distance of plus or minus 0.160 inches from the nominal profile in a direction normal to any surface location along the nominal profile and which includes any coating process, defines a profile envelope for this bucket airfoil. The airfoil shape is robust to this variation without impairment of the mechanical and aerodynamic functions.
It will also be appreciated that the airfoil can be scaled up or scaled down geometrically for introduction into similar turbine designs. Consequently, the X and Y coordinates in inches and the non-dimensional Z coordinates, when converted to inches, of the nominal airfoil profile given below may be a function of the same constant or number. That is, the X, Y and Z coordinate values in inches may be multiplied or divided by the same constant or number to provide a scaled up or scaled down version of the bucket airfoil profile while retaining the airfoil section shape.
In a preferred embodiment according to the present invention, there is provided a turbine bucket including an airfoil having an airfoil shape, the airfoil having a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0 to 1 convertible to Z distances in inches by multiplying the Z values by a height of the airfoil, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape.
In a further preferred embodiment according to the present invention, there is provided a turbine bucket including an airfoil having an uncoated nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0 to 1 convertible to Z distances in inches by multiplying the Z values by a height of the airfoil, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each Z distance, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape, the X, Y and Z distances being scalable as a function of the same constant or number to provide a scaled-up or scaled-down airfoil.
In a further preferred embodiment according to the present invention, there is provided a turbine comprising a turbine wheel having a plurality of buckets, each of the buckets including an airfoil having an airfoil shape, the airfoil having a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0 to 1 convertible to Z distances in inches by multiplying the Z values by a height of the airfoil, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define the airfoil profile sections at each distance Z, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape.
In a further preferred embodiment according to the present invention, there is provided a turbine comprising a turbine wheel having a plurality of buckets, each of the buckets including an airfoil having an uncoated nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein the Z values are non-dimensional values from 0 to 1 convertible to Z distances in inches by multiplying the Z values by a height of the airfoil, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape, the X, Y and Z distances being scalable as a function of the same constant or number to provide a scaled-up or scaled-down bucket airfoil.


REFERENCES:
patent: 6461109 (2002-10-01), Wedlake et al.
patent: 6461110 (2002-10-01), By et al.
patent: 6503054 (2003-01-01), Bielek et al.
patent: 6715990 (2004-04-01), Arness et al.
patent: 6722852 (2004-04-01), Wedlake et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Airfoil shape for a turbine bucket does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Airfoil shape for a turbine bucket, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Airfoil shape for a turbine bucket will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295580

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.