Measuring and testing – With fluid pressure – Leakage
Reexamination Certificate
2002-04-16
2003-03-18
Oen, William (Department: 2855)
Measuring and testing
With fluid pressure
Leakage
Reexamination Certificate
active
06532800
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to aircraft pressurization test apparatus and method of using such apparatus to perform pressure-related diagnostic tests on aircraft.
A conventional aircraft pressurization test unit includes several measurement components for performing pressure-related diagnostics and an integral blower to pressurize the aircraft cabin. The blower of the test unit is noisy and the noise affects a user's ability to detect air leaks of the aircraft cabin. Also, the air delivered by the test unit to the aircraft cabin is hot. The hot air makes the aircraft cabin uncomfortably hot for people performing tests in the cabin.
SUMMARY OF THE INVENTION
Among the several advantages of the present invention may be noted the provision of an improved aircraft pressurization test apparatus which is sufficiently quiet so as to not substantially interfere in a user's ability to perform pressure-related diagnostics on an aircraft cabin; such an aircraft pressurization test apparatus adapted for delivering cool air to an aircraft cabin; and a method of using an aircraft pressurization test apparatus to perform pressure-related diagnostics on an aircraft cabin which provides improved results.
Generally, a method of the present invention is of using an aircraft pressurization test apparatus to perform diagnostic tests on an aircraft while the aircraft is at a first region of a ground site, such as an aircraft hanger. The ground site includes shop air. The shop air comprises a compressor fixedly secured to a second region of the ground site. The shop air further comprises fluid lines and a plurality of air couplers at different locations of the ground site. The compressor and fluid lines are configured and adapted for delivery of pressurized air to the air couplers. The aircraft comprises an aircraft cabin and an aircraft cabin pressurization inlet opening in fluid communication with the aircraft cabin. The aircraft pressurization test apparatus comprises a shop air aperture and a delivery air aperture. The method comprises: positioning the aircraft at the first region of the ground site, using a first delivery line in a manner to enable fluid communication between the shop air aperture of the aircraft pressurization test apparatus and one of the air couplers of the shop air; using a second delivery line in a manner to enable fluid communication between the aircraft cabin pressurization inlet opening and the delivery air aperture; delivering air from the compressor of the shop air through the aircraft cabin pressurization inlet opening and into the aircraft cabin via the shop air aperture and the delivery air aperture of the aircraft pressurization test apparatus; and regulating the delivery of air from the compressor of the shop air through the aircraft cabin pressurization inlet opening by changing characteristics of the flow path between the shop air aperture and the delivery air aperture.
Another aspect of the present invention is a method of using an aircraft pressurization test apparatus to detect air leakage from a cabin of an aircraft. The aircraft comprises the aircraft cabin and an aircraft cabin pressurization inlet opening in fluid communication with the aircraft cabin. The aircraft pressurization test apparatus comprises a source air aperture and a delivery air aperture. The method comprises positioning the aircraft at a first region of a ground site. The ground site further includes a second region with a source of pressurized air at the second region. The method further comprises: using a first delivery line in a manner to enable fluid communication between the source air aperture of the aircraft pressurization test apparatus and the source of pressurized air; using a second delivery line in a manner to enable fluid communication between the aircraft cabin pressurization inlet opening and the delivery air aperture; delivering air from the source of pressurized air through the aircraft cabin pressurization inlet opening and into the aircraft cabin via the source air aperture and the delivery air aperture of the aircraft pressurization test apparatus; and listening to the exterior of the aircraft for leakage of air from the aircraft cabin to locate leaks. The delivering of air is sufficient to pressurize the aircraft cabin to a cabin test pressure. The step of positioning the aircraft at the first region of the ground site comprises positioning the aircraft sufficiently remote from the source of pressurized air such that noise from the source of pressurized air is insufficient to interfere with the step of locating leaks.
Another aspect of the present invention is a method of using an aircraft pressurization test apparatus to perform diagnostic tests on an aircraft while the aircraft is at a ground site, such as an aircraft hanger. The ground site includes a source of pressurized air. The aircraft comprises an aircraft cabin and an aircraft cabin pressurization inlet opening in fluid communication with the aircraft cabin. The aircraft pressurization test apparatus comprises a source air aperture and a delivery air aperture. The method comprises: positioning the aircraft at the ground site; using a first delivery line in a manner to enable fluid communication between the source air aperture of the aircraft pressurization test apparatus and the source of pressurized air; using a second delivery line in a manner to enable fluid communication between the aircraft cabin pressurization inlet opening and the delivery air aperture; delivering air from the source of pressurized air through the aircraft cabin pressurization inlet opening and into the aircraft cabin via the source air aperture and the delivery air aperture of the aircraft pressurization test apparatus, the delivering of air being sufficient to pressurize the aircraft cabin to a cabin test pressure; detecting leakage of air from the aircraft cabin; and maintaining delivery of air from the source of pressurized air and into the aircraft cabin at a temperature of less than 120° F. (49° C.) during the step of detecting leakage of air from the aircraft cabin.
Another aspect of the present invention is an aircraft cabin pressurization test apparatus for performing diagnostic tests on an aircraft while the aircraft is at a first region of a ground site, such as an aircraft hanger. The aircraft comprises an aircraft cabin. The ground site includes a source of pressurized air. The aircraft cabin pressurization test apparatus comprises a housing, a shop air coupler, a delivery air coupler, at least one valve, a supply air flow gauge, a supply air pressure gauge, a cabin feedback air coupler, and a cabin pressure gauge. The shop air coupler is connected to the housing and configured and adapted to releasably receive a fluid line in fluid communication with the source of pressurized air of the ground site. The delivery air coupler is connected to the housing and configured and adapted to releasably receive a fluid line in fluid communication with an aircraft cabin pressurization inlet opening of the aircraft. A supply air pathway is defined between the shop air coupler and the delivery air coupler. The valve is in the supply air pathway and is adapted for controlling flow of air from the shop air coupler through the delivery air coupler. The supply air flow gauge is adapted and configured for gauging air flow in the supply air pathway. The supply air pressure gauge is adapted and configured for gauging air pressure in the supply air pathway. The cabin feedback air coupler is connected to the housing and adapted and configured to releasably receive a fluid line in fluid communication with the aircraft cabin. The cabin pressure gauge is at least partially within the housing and in fluid communication with the cabin feedback air coupler. The cabin pressure gauge is adapted and configured to gauge air pressure in the aircraft cabin when the cabin feedback air coupler is in fluid communication with the aircraft cabin.
Other objects and features will be in part apparent and in part pointed out herein
Boeckstiegel Donald
Ousley William D.
Ritchie Scott
Oen William
Thompson & Coburn LLP
Thunder Aviation NA, Inc.
LandOfFree
Aircraft pressurization test apparatus and method of using same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aircraft pressurization test apparatus and method of using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aircraft pressurization test apparatus and method of using same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3042234