Aircraft landing light assembly with resilient vibration...

Illumination – Supported by vehicle structure – Aircraft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S472000, C362S369000, C362S306000, C362S267000, C362S549000

Reexamination Certificate

active

06533441

ABSTRACT:

TECHNICAL FIELD
The present invention relates to light assemblies, and in particular, to aircraft landing light assemblies having a resilient vibration dampening mounting system for preventing premature vibration induced lamp failures.
BACKGROUND OF THE INVENTION
A common problem associated with aircraft landing lights pertains to vibration induced premature lamp failure. The premature failure of aircraft landing lights posses significant safety issues to aircraft, air traffic controllers and ground crew unable to see a plane exhibiting this problem, and to pilots having difficulty landing the plane because of diminished visibility of the runway.
Premature lamp failure also results in significant economic affects in addition to the serious safety concerns. Aircraft landing lights are costly to replace, and are typically built to last for about two-three years. However, because of vibration induced premature lamp failure, aircraft landing lights typically need to be replaced every two to three months instead of every two to three years.
When mounted onto an operating propellor driven aircraft, landing lights experience excessive vibrations and stress from many directions. The inventor has discovered that one of the primary causes of premature lamp failures in aircraft landing lights is caused by engine and propeller induced vibrations in the plane's fuselage that are transmitted to lamps contained within landing light assemblies. The effect of engine and propeller induced vibrations becomes more severe the closer the lights are located to the propellor. Vibration dampening systems disclosed in the prior art generally do not provide for adequate dampening of vibrational forces that contribute to premature vibration induced lamp failure, and therefore are limited in their over-all effectiveness for this purpose.
To dampen vibrations, lamp assemblies in the prior art have used stiff metal supports, springs, and resilient materials for engaging mounted lamp assemblies. An exemplary prior art embodiment includes U.S. Pat. No. 4,282,566 to Newman, wherein a shock mounting bracket for a vehicle lamp bulb has a serpentine strip with a centrally located bulb-receiving socket which engages the base of the bulb. Other exemplary prior art lamp assemblies having vibration dampening features are illustrated in U.S. Pat. No. 3,065,342 to Worden and U.S. Pat. No. 5,491,619 to Gill. Both Worden and Gill use resilient grommets located between the light assembly and the mounting assembly to provide some shock resistance to the lamp bodies contained therein.
Vibration dampening systems such as those disclosed in Newman are limited by their engagement of a lamp socket or the base of a lamp bulb to reduce vibratory effects. While vibration dampening systems that rely on resilient grommets such as those disclosed in Gill and Worden are held in place by compression forces, whereby the resiliency of the grommets is limited to only a portion of what would be expected had the grommets been held in place in an uncompressed state.
Current vibration dampening systems used in aircraft landing lights and the like are generally ineffective in preventing damage, and eventual failure of the lamps contained therein, and may actually enhance the premature failure of the lamps by directly transmitting vibratory loads to the lamps, rather than sufficiently dampening them.
What is needed is an improved aircraft light mounting system capable of dampening vibrations transmitted to lamps located therein in order to prevent premature vibrational induced lamp failure. Current vibration dampening systems are ineffective in reducing vibration induced lamp failures in aircraft landing lights. The present invention is the result of an attempt to meet this need, and overcome the drawbacks associated with current vibration dampening systems. None of the art which applicant is aware of describes aircraft landing light assemblies having a resilient vibration dampening mounting system that prevents premature vibration induced lamp failure as disclosed and claimed herein.
SUMMARY OF THE INVENTION
Accordingly, it is a principal object of the present invention to provide an aircraft landing light assembly having a resilient vibration dampening mounting system for absorbing propeller and engine induced fuselage vibrations, thereby protecting the lamp contained within the light assembly from premature vibration induced lamp failure.
The light assembly includes a forward ring and a rear ring that engage opposite faces of the rim of a sealed beam lamp located between the two rings. A resilient O-ring sits in a chamfer in the forward ring to keep the sealed beam lamp in place. There are preferably four cylindrically-shaped shock damper mounts that protect the sealed beam lamp from premature vibrational lamp failure, and also fasten the light assembly components together and to an aircraft mounting bracket. Each mount includes an enlarged cylindrically-shaped resilient shock damper material having a threaded headless screw located on each end of the cylindrical. Each shock damper sits in a tapered well on the back of the rear ring and prevents vibrations from a plane's fuselage from being transmitted to the sealed beam lamp.
An object of the present invention is to provide a light assembly which dampens vibrations to the lamp disposed therein in all directions.
A further object of the present invention is to provide a light assembly which prevents vibration induced damage and the premature failure of lamps disposed therein, thereby effectively extending the life of the lamp.
Another object of this invention is to provide a light assembly useful in aircraft landing lights.
It is also an object of the present invention to provide a light assembly that includes a resilient mount system that dampens vibrations by absorption of the vibrations, and by deformation of the resilient mount body.
It is a further object of this invention to provide improved elements and arrangements thereof for the purposes described which are inexpensive, dependable and fully effective in accomplishing its intended purposes, and capable of overcoming the above identified problems associated with prior art applicators.
These and other objects of the present invention will become readily apparent upon further review of the following specification and drawing.


REFERENCES:
patent: 2814722 (1957-11-01), Diedring
patent: 2910577 (1959-10-01), Bolmeyer
patent: 3636343 (1972-01-01), Martin
patent: 3757109 (1973-09-01), Knecht et al.
patent: 4282566 (1981-08-01), Newman
patent: 4356539 (1982-10-01), Shanks
patent: 4422136 (1983-12-01), Newman et al.
patent: 4425813 (1984-01-01), Wadensten
patent: 4965703 (1990-10-01), Whalen
patent: 4967328 (1990-10-01), Tatavoosian
patent: 5644189 (1997-07-01), Busby
patent: 6191541 (2002-02-01), Patel et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aircraft landing light assembly with resilient vibration... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aircraft landing light assembly with resilient vibration..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aircraft landing light assembly with resilient vibration... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3080510

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.