Communications: radio wave antennas – Antennas – With means for moving directive antenna for scanning,...
Reexamination Certificate
2000-04-07
2001-03-27
Le, Hoanganh (Department: 2821)
Communications: radio wave antennas
Antennas
With means for moving directive antenna for scanning,...
C343S705000, C348S086000, C455S001000, C342S363000
Reexamination Certificate
active
06208307
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of aircraft systems, and, more particularly, to an aircraft in-flight entertainment system and associated methods.
BACKGROUND OF THE INVENTION
Commercial aircraft carry millions of passengers each year. For relatively long international flights, wide-body aircraft are typically used. These aircraft include multiple passenger aisles and have considerably more space than typical so-called narrow-body aircraft. Narrow-body aircraft carry fewer passengers shorter distances, and include only a single aisle for passenger loading and unloading. Accordingly, the available space for ancillary equipment is somewhat limited on a narrow-body aircraft.
Wide-body aircraft may include full audio and video entertainment systems for passenger enjoyment during relatively long flights. Typical wide-body aircraft entertainment systems may include cabin displays, or individual seatback displays. Movies or other stored video programming is selectable by the passenger, and payment is typically made via a credit card reader at the seat. For example, U.S. Pat. No. 5,568,484 to Margis discloses a passenger entertainment system with an integrated telecommunications system. A magnetic stripe credit card reader is provided at the telephone handset and processing to approve the credit card is performed by a cabin telecommunications unit.
In addition to prerecorded video entertainment, other systems have been disclosed including a satellite receiver for live television broadcasts, such as disclosed in French Patent No. 2,652,701 and U.S. Pat. No. 5,790,175 to Sklar et al. The Sklar et al. patent also discloses such a system including an antenna and its associated steering control for receiving both RHCP and LHCP signals from direct broadcast satellite (DBS) services. The video signals for the various channels are then routed to a conventional video and audio distribution system on the aircraft which distributes live television programming to the passengers.
In addition, U.S. Pat. No. 5,801,751 also to Sklar et al. addresses the problem of an aircraft being outside of the range of satellites, by storing the programming for delayed playback, and additionally discloses two embodiments—a full system for each passenger and a single channel system for the overhead monitors for a group of passengers. The patent also discloses steering the antenna so that it is locked onto RF signals transmitted by the satellite. The antenna steering may be based upon the aircraft navigation system or a GPS receiver along with inertial reference signals.
A typical aircraft entertainment system for displaying TV broadcasts may include one or more satellite antennas, headend electronic equipment at a central location in the aircraft, a cable distribution network extending throughout the passenger cabin, and electronic demodulator and distribution modules spaced within the cabin for different groups of seats. Many systems require signal attenuators or amplifiers at predetermined distances along the cable distribution network. In addition, each passenger seat may include an armrest control and seatback display. In other words, such systems may be relatively heavy and consume valuable space on the aircraft. Space and weight are especially difficult constraints for a narrow-body aircraft.
Published European patent application No. 557,058, for example, discloses a video and audio distribution system for an aircraft wherein the analog video signals are modulated upon individual RF carriers in a relatively low frequency range, and digitized audio signals, including digitized data, are modulated upon an RF carrier of a higher frequency to avoid interference with the modulated video RF carriers. All of the video and audio signals are carried by coaxial cables to area distribution boxes. Each area distribution box, in turn, provides individual outputs to its own group of floor distribution boxes. Each output line from a floor distribution box is connected to a single line of video seat electronic boxes (VSEB). The VSEB may service up to five or more individual seats. At each seat there is a passenger control unit and a seat display unit. Each passenger control unit includes a set of channel select buttons and a pair of audio headset jacks. Each display unit includes a video tuner that receives video signals from the VSEB and controls a video display.
A typical cable distribution network within an aircraft may be somewhat similar to a conventional coaxial cable TV system. For example, U.S. Pat. No. 5,214,505 to Rabowsky et al. discloses an aircraft video distribution system including amplifiers, taps and splitters positioned at mutually distant stations and with some of the stations being interconnected by relatively long lengths of coaxial cable. A variable equalizer is provided at points in the distribution system to account for different cable losses at different frequencies. The patent also discloses microprocessor-controlled monitoring and adjustment of various amplifiers to control tilt, that is, to provide frequency slope compensation. Several stations communicate with one another by a separate communication cable or service path independent of the RF coaxial cable. The patent further discloses maintenance features including reporting the nature and location of any failure or degradation of signals to a central location for diagnostic purposes.
Service reliability is important to an aircraft in-flight entertainment system. Of course, one considerable technical challenge for an in-flight entertainment system receiving DBS signals is that the antenna must be accurately steered to track the satellite while the aircraft is in flight. Rain or other atmospheric phenomena may affect signal propagation at certain frequencies thereby further complicating accurate antenna steering and thereby adversely effecting service reliability.
SUMMARY OF THE INVENTION
In view of the foregoing background, it is therefore an object of the present invention to provide a system and method for providing high service reliability in an aircraft in-flight entertainment system.
This and other objects, features and advantages in accordance with the present invention are provided by an aircraft in-flight entertainment system including an antenna, a satellite TV receiver connected to the antenna for receiving TV programming channels, one or more video displays connected to the satellite TV receiver, and wherein the antenna is steered using received signals in the relatively wide bandwidth of at least one satellite transponder. The satellite TV receiver may be a direct broadcast satellite (DBS) receiver, for example. More particularly, the system also preferably includes an antenna steering positioner connected to the antenna, and an antenna steering controller comprising the received signal detector for generating a received signal strength feedback signal based upon signals received from the full bandwidth of the satellite transponder rather than a single demodulated programming channel, for example. A processor is connected to the received signal detector for controlling the antenna steering positioner during aircraft flight and based upon the received signal strength feedback signal. Accordingly, tracking of the satellite is enhanced and signal service reliability is also enhanced.
The antenna steering controller may further comprise at least one inertial rate sensor. In this variation, the processor preferably calibrates the rate sensor based upon the received signal strength feedback signal. The antenna steering controller may also include a global positioning system (GPS) receiver connected to the processor. The processor may further calibrate the rate sensor based upon signals from the GPS receiver.
One aspect of the invention is that the aircraft may include an aircraft navigation system, and wherein the antenna steering controller may operate independent of the aircraft navigation system. Accordingly, the antenna steering may operate faster and without potential unwanted effects on the aircraft
Frisco Jeffrey A.
Keen Michael
Allen Dyer Doppelt Milbrath & Gilchrist, P.A.
Le Hoang-anh
Live TV, Inc.
LandOfFree
Aircraft in-flight entertainment system having wideband... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aircraft in-flight entertainment system having wideband..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aircraft in-flight entertainment system having wideband... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2445811