Aircraft and drive device for aircraft

Aeronautics and astronautics – Aircraft power plants – Arrangement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S016000

Reexamination Certificate

active

06550719

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to an aircraft and a drive device for aircraft, in particular for power gliders, having a propeller which is driven by a motor, preferably by an electric motor, and the blades of which can be tilted towards the propeller shaft by way of a joint and in the tilted-out position pass through a running gap for the propeller formed between the nose of the aircraft and the fuselage by displacement of the said nose.
In the case of gliders it is already known to provide a propeller drive for the starting procedure. In this case the propeller blades can be tilted towards the propeller shaft by way of a joint, so that during the flight without the motor they are covered by the nose resting against the fuselage and do not offer any resistance to the oncoming air, and, as a result, the gliding properties of the aircraft are improved. In the case of self-starting and/or in a motor-cruising flight, a running gap for the propeller is freed between the nose and the fuselage by displacement of the said nose, the propeller blades tilted out by centrifugal force passing through the said running gap for the propeller.
In the case of known aircraft of this type, a drive motor is provided behind the pilot's seats, the drive motor driving the propeller—the blades of which pass through the running gap for the propeller—by way of an extension-shaft arrangement (DE 28 14 586 C2). Because of the space required for the motor, a design of this type increases the length of the aircraft in an undesired manner and, as a result of the shaft arrangement extending between the pilot's seats, creates unfavorable conditions of space.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a compact, high-performance drive device for aircraft, in particular for power gliders, in which the generally minimal conditions of space are utilized in an optimum manner, and which also ensures the necessary aerodynamic properties of the aircraft. In order to attain this object, the invention proposes that the motor should be arranged in front of the propeller in the space bounded by the nose. The design according to the invention allows the interior of the aircraft to be utilized in an optimum manner as far as the running gap for the propeller while retaining the aerodynamically refined shape of a slim glider fuselage, the spice of neutral center-of-gravity behind the pilot can be utilized for receiving [current-] supply batteries and an undercarriage, optionally a retractable undercarriage, and its design is not spoiled by a power source situated at this point and which would result in an extension of the fuselage or an increase in the cross-section of the fuselage. In addition, the invention allows a direct drive of the propeller by the motor, since the propeller is situated immediately adjacent to the motor. Furthermore, the large propeller diameter possible in the design according to the invention ensures an optimum driving speed of the aircraft.
In accordance with a preferred embodiment of the invention the motor is arranged on a support projecting from the fuselage, in particular from a rib passing through the said fuselage, in the direction towards the nose.
The said support is preferably formed by a tube in which actuating devices for displacing the nose and energy-supply devices and/or further actuating devices for example for the adjustment or locking of the propeller blades and/or control and measuring devices are arranged. In this particularly expedient embodiment the tube not only is used for supporting or securing the motor but also receives the aforesaid devices. In the simplest case the tube is traversed by a preferably tubular rod which is arranged so to be displaceable in the longitudinal direction of the tube and which is connected to the nose, so that as a result of displacement of the rod in the longitudinal direction of the tube the nose fastened to the said rod can be moved into the desired position. The tubular design of the rod makes it possible for the aforesaid energy-supply devices and/or control and measuring devices, such as for example cables for the supply of the drive motor in the form of an electric motor for the propeller, dynamic-airspeed indicators or the like, to be passed through the rod.
In accordance with a further embodiment of the invention the front end of the nose has an opening which—when the running gap for the propeller is closed—is covered by a closure member secured to the support. If the opening is closed by the closure member, optimum aerodynamic conditions occur during the flight without the motor. If, on the other hand, the aircraft is driven by way of the propeller and the nose is therefore displaced to free the running gap for the propeller, air passes by way of the opening into the space which is enclosed by the nose and which receives the motor, as a result of which the motor is cooled.
If the motor is designed in the form of an electric motor, according to the invention the arrangement is made that the motor has a stator secured to the support and a rotor which is mounted so as to be rotatable about the said stator and which is connected to the propeller. A design of this type makes it possible to connect the stator rigidly to the support and to drive the propeller directly from the rotor without the interposition of a shaft. In this case it is advantageous if the end region of the rotor facing the fuselage is provided with attachments from which joint pins project in the direction towards the fuselage on which the propeller blades are pivotably mounted. A design of this type also makes it possible to insert the point pins into the corresponding bearing shells of the propeller blades from the front.
The propeller blades are preferably held by springs in their position tilted towards the propeller shaft, thereby ensuring that when the propeller is not being driven the nose can be displaced beyond the propeller blades in the direction towards the fuselage.
It is advantageous if a brake, which can preferably be activated by the actuating device for the displacement of the nose, is provided for the rotor of the motor. This brake prevents the propeller blades from continuing to move even if the motor is switched off, and thus from retaining their tilted-out position in an undesired manner.
In accordance with a preferred embodiment a brake of this type is provided with arms, preferably spring-loaded, which are mounted on the support so as to be displaceable and at the free ends of which a brake lining cooperating with the rotor of the motor is arranged. If the actuating device is used at the same time for changing the position of the nose, when the latter is displaced in the direction towards the fuselage the brake lining first comes to rest against the rotor and brakes it, after which the blades are tilted against the propeller shaft and the running gap for the propeller is then closed.
If the end of the nose bounding the running gap for the propeller is not circular, but is made oval for example, then, in order to be able to push the nose over the tilted propeller blades, it is necessary as a rule for these propeller blades and also therefore the rotor directly connected to the propeller blades to occupy a defined rest position. In order to provide for this rest position, the brake lining is subdivided into segments in the peripheral direction of the rotor, at least one segment being constructed in the form of a spring-loaded component engaging in a depression in the rotor. When this component engages in the depression in the rotor, the latter is fixed in a precisely defined position.
Depending upon whether the aircraft is to be started with the propeller, whether the motion of the aircraft is to be assisted by the propeller drive during the flight or whether the batteries required for driving the electric motor are to be charged during the flight without the motor by way of the electric motor now acting as a charging generator, it is necessary to alter the angle of incidence of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aircraft and drive device for aircraft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aircraft and drive device for aircraft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aircraft and drive device for aircraft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090591

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.