Airborne gas storage and supply system

Refrigeration – Storage of solidified or liquified gas – With vapor discharged from storage receptacle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06658863

ABSTRACT:

FIELD OF THE INVENTION
The invention described herein relates to an airborne gas storage system and method, and more specifically to a system and method for storing a greater amount of a pressurized gas on board a launch vehicle, and providing access to a greater portion of said gas.
BACKGROUND OF THE INVENTION
Various launch vehicles, such as rocket powered vehicles, will at times have a need for a source of pressurized gas. For example, liquid propellant rocket engines typically have one or more tanks on board which store propellant for the rocket engine. Propellant tanks such as those which store liquid oxygen (LOX) or kerosene, typically require tank pressurization in order to expel propellant at a controlled rate to the rocket engines or to maintain tank structural integrity. Certain gases are typically employed for this application because they do not condense at propellant temperatures. A gas which is regularly employed for this purpose is helium.
In a typical use of helium for this purpose, prior to lift off of a launch vehicle which employs liquid propellant, ground support equipment (GSE) will load pressurized gaseous helium (GHE) into flight storage bottles at ambient temperatures. The pressure at which the GHE is stored in the flight bottle provides for the flow of GHE from the flight bottle to the propellant tanks. In a typical application, many containers may be necessarily employed to provide the desired amount of helium gas.
SUMMARY OF THE INVENTION
The inventors have recognized that it would be desirable to employ a pressurized gas supply system which is configured to hold a large amount of pressurized gas and then provide access to substantially all of the gas so as to reduce the amount of residual gas remaining in the bottle. The inventors have further recognized that such a system is desirable if it is configured to use systems and components already present on the particular airborne craft, and significant modifications do not have to be made to the current system in order to employ the system described herein.
Described herein is a system and method for providing a source of pressurized gas. The system may include a bottle which is configured with sufficient structural integrity to receive and hold a stored gas where the bottle includes at least one valve device for controlling the inflow and outflow of the stored gas. Locatable within the bottle is at least one heating device configured so as to provide heat transfer from the device to the gas contained within the bottle so as to affect the gas pressure. The system may further include a supply line connectable to the first valve device which provides for directing the flow of the gas to a remote location.
In one configuration of the invention, the system described herein may be locatable aboard a rocket powered launch vehicle which employs a source of pressurized gas for purposes of pressurizing a propellant tank. For example, in liquid fuel rockets, an inert gas such as helium may be employed to pressurize the propellant tanks to provide constant propellant flow and to maintain tank structural integrity during flight. The system described herein is configured to control the pressure of the helium within the storage bottle and provide for the flow of the pressurized helium gas to the propellant tanks.
When helium or other inert gases are stored, the bottle may be configured to receive and store the gas in an extremely cold, high density, supercritical state. The supercritical helium is storable in the bottle at a high pressure. In one configuration of the invention, the heating device performs the task of heating the supercritical helium in the bottle to provide a desired pressure within the bottle. Pressurized gas may then exit the bottle and be directed to a remote source such as a propellant tank.
In yet another configuration of the invention, the heating device may comprise a heat exchanger through which a medium may pass which transfers its heat to the contents of the bottle. One medium may be the helium gas itself which is routed from the bottle to a remote heat exchanger, heated, and then returned to a heat exchanger in the bottle. The remote heat exchanger may employ hot gas from the propulsion system of the launch vehicle as a heat source. Other self-contained heaters, such as an electric heater, may also be employed for this purpose.
When the heated helium gas is passed through the heat exchanger in the bottle it transfers heat to the contents of the bottle. This transfer of heat from the medium to the stored content has the advantage that the medium is now cooled to the point that it is not hot enough to damage down stream components in the system. The medium exiting the bottle heat exchanger may then be routed through an external supply line to its ultimate destination, which may be a propellant tank.
In the configuration of the invention where the system is configured to store and provide access to a high density, supercritical gas such as helium, the bottle apparatus employed for this purpose may include an inner container portion (pressure vessel) which is constructed of a material of sufficient strength and ductility to provide for the storage of the gas at extremely low temperatures. In yet another configuration of the invention, the pressure vessel portion may be constructed of annealed Extra Low Interstitials (ELI) grade TI-6Al-4V (titanium alloy), because this singular grade has a very low specific heat and thermal conductivity, very high strength, adequate ductility and low density. The bottle may be further configured with at least one valve device for controlling the flow of helium gas in and out of the bottle.
Disposed around the pressure vessel portion may be at least one temperature control layer. This temperature control layer may be composed of multiple elements but whose principle purpose is to reduce the flow of heat from the external environment to the contents of the pressure vessel and to remove heat from the pressure vessel itself. In one configuration the pressure vessel is surrounded by a shroud which creates an annulus through which coolant flows. Liquid helium may be used as the coolant to cool and maintain the pressure vessel and the contents of the pressure vessel within the desired temperature band by intercepting heat coming from the environment and removing heat from the pressure vessel itself. The external surface of the shroud may be covered with a foam or ceramic fiber batting insulation material to minimize the amount of coolant required.
In yet another configuration the temperature control layer is composed of a vapor cooled shield. The vapor cooled shield is formed by placing a layer of insulation in direct contact with the pressure vessel exterior wall, next layering a thermally conductive metallic foil, and finally placing tubing which contains coolant in contact with the metallic foil layer. The coolant may be supplied from the contents of the pressure vessel or from an independent source and the flow controlled by one or more valves. These layers are then covered by insulative foam or ceramic batting. In this configuration, the pressure vessel is cooled by its contents boiling off, where boiled off gasses leave the tank through an orifice.
As was described above, the bottle may enclose a heating device for heating the contents of the bottle and thus controlling the internal temperature and pressure. In yet another configuration of the invention, the bottle heat exchanger may comprise an inlet manifold configured to receive the heated medium from the remotely located heat exchanger. Extending from the inlet manifold may be at least one tubular shaped member extending substantially through the inner volume of the container element. In connection with the tubular member may be a turnaround manifold which is further connected to another tubular member which extends through the inner volume of the container element in a direction substantially opposite to the first tubular member. This tubular member is further in connection with an exit manifold which pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Airborne gas storage and supply system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Airborne gas storage and supply system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Airborne gas storage and supply system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3183426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.