Airbag system with controlled inflation

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S742000

Reexamination Certificate

active

06322102

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an airbag arrangement in a safety system, especially in motor vehicles, with a gas generator arranged in a gas guide housing and at least one inflatable airbag connected to an assigned connection opening of the gas guide housing, and with a sliding element that can be displaced between two positions relative to the connection opening of the gas guide housing as a valve member for controlling the inflation process of the airbag, whereby the sliding element can be translationally moved in the gas guide housing that is sealed with a cover at one side, the cover acting as a stop for the sliding element, and the sliding element in its first position is arranged at a distance from the cover, this distance constituting the possible displacement path such that the gas released by the gas generator acts on one side of the sliding element causing the pressure level on each side of the direction of movement of the sliding element to be different and causing the sliding element to move in the direction of its second position.
U.S. Pat. No. 4,006,919 describes an airbag arrangement with the aforesaid features. Arranged in the gas guide housing for controlling the gas flow from the gas guide housing into the airbag is a sliding element that is movable between two positions using one of the different pressure levels on either side of the sliding element. This known airbag arrangement is associated with the disadvantage that one or more additional connections for additional airbags cannot be triggered with the known sliding element.
Known from DE 196 20 617 A1 is furthermore an airbag arrangement with an inflation control in which the gas flow produced by the gas generator is conducted into an additional intermediate housing in which is arranged a component for generating a dynamic pressure that projects into the gas flow end and acts as a displacement force for a sliding element that acts as a valve member for controlling connection openings for preferably a plurality of airbags; the sliding element is fixed in its starting position exposing the cross-section of the connection openings via controlled releasable fastening means.
Although with the known inflation control it is already possible to control the inflation of one or even a plurality of attached airbags, if necessary also as a function of calculated collision data, whereby the movement of the sliding element is actuated by the released flow of gas itself without any need for outside energy, producing and installing the control apparatus is still a complex process because the intermediate housing is interposed therein and because of the component that produces the dynamic pressure for controlling the actual sliding element.
The object of the present invention is therefore to arrange a simple and effective control of the inflation process of at least two airbags attached to the gas guide housing in an airbag arrangement having the foregoing features.
SUMMARY OF THE INVENTION
This object is achieved, including advantageous embodiments and further developments of the invention, by the contents of the patent claims that follow this specification.
The basic idea of the present invention provides that an additional opening for connecting an additional airbag is formed on the side of the gas guide housing opposite the cover of the gas guide housing and the sliding element is embodied as a sliding sleeve that concentrically surrounds the tubular gas generator and that is displaceably arranged in the annular gap between gas generator and gas guide housing between an open position and a closed position for the connection opening, which is radially formed in the wall of the gas guide housing. The invention has the advantage that the sliding element itself is actuated and driven directly by the gas flow. Due to the different levels of pressure that occur on both sides of the axis of motion of the sliding element, a resulting force occurs in the desired direction of movement of the sliding element so that corresponding displacement of the sliding element from its open position to the closed position is effected within a very short period of time. The invention is particularly effectively embodied when the additional opening is arranged axially opposite the cover.
In accordance with one exemplary embodiment of the invention, it can be provided that the sliding sleeve has at least one U-shaped open section running in its longitudinal direction and closed in the direction of the closed position of the sliding sleeve for exposing the gas discharge openings of the gas generator. It is possible to transfer the gas flow from the gas discharge openings of the gas generator via the open section into the radially arranged connection opening for the airbag. In addition, the arrangement of the open section or of a plurality of open sections can be used to change the effective end face surface of the sliding sleeve on its pressure side and thus to cause the sliding sleeve to move differently.
In order to prevent the sliding sleeve from rotating relative to the gas guide housing during its displacement, it can be provided that the sliding sleeve is guided during its displacement relative to the gas guide housing by means of an anti-rotation element, whereby preferably the anti-rotation element is a pin that has been inserted into the wall of the gas guide housing and that has been guided into a longitudinal hole in the sliding sleeve.
In a further embodiment of the invention, it can be provided that the sliding element is guided on the g as guide housing with a rotational movement that overlaps its translational movement, whereby this simultaneously involves restricted guidance and provides a good seal to the open position because the open position is displaced both axially and radially to the closed position. In addition, the sliding element can have a guide slot that engages the pin arranged at the gas guide housing, that is longitudinally helical, and that extends circumferentially.
In order to be able to define the beginning of the displacement of the sliding sleeve as a function of the gas pressure that occurs, it can be provided that the sliding sleeve is fixed in its open position by means of releasable fastening means. In alternative exemplary embodiments the fastening means can be embodied as either a shearing pin or a locking connection that is releasable under pressure.
In an alternative embodiment of the invention it is provided that, for moving the fastening means into its release position, a separate drive is provided for the sliding sleeve, the drive thus defined as controllable.
In order to be able to reliably define the final position of the sliding sleeve in its closed position, retaining means can be provided for fixing the sliding sleeve in its closed position.
In accordance with one exemplary embodiment of the invention, it is provided that the cover that closes the gas guide housing on one side has relief bores. If the sliding sleeve is not guided with a sufficient seal in the gas guide housing in the space located in front of the cover that defines the displacement path of the sliding sleeve, this advantageously ensures that gas pressure does not build up that could act against the displacement direction of the sliding sleeve. In addition, it can be provided that the relief bores are closed by the sliding sleeve when it is located in the closed position.
The movement of the sliding sleeve from its open position into its closed position can also be controlled in that arranged between cover and sliding sleeve is a spring for controlling the displacement of the sliding sleeve into its closed position.
To assist the displacement of the sliding sleeve, in accordance with one exemplary embodiment of the invention it can be provided that a spring is provided that biases the sliding sleeve in its closed position and that is supported on the gas guide housing.
In a further embodiment, the sliding sleeve can have a magnetic section to which on the exterior side of the gas guide housing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Airbag system with controlled inflation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Airbag system with controlled inflation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Airbag system with controlled inflation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2577423

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.