Measuring and testing – Volume or rate of flow – Using differential pressure
Reexamination Certificate
2001-11-02
2004-03-30
Moller, Richard A. (Department: 2856)
Measuring and testing
Volume or rate of flow
Using differential pressure
C399S355000
Reexamination Certificate
active
06711959
ABSTRACT:
TECHNICAL FIELD
This invention relates to air velocity measurement instruments.
BACKGROUND OF THE INVENTION
It is often desirable to know the flow rate and velocity of a fluid in pneumatic systems such as, for example pneumatic servo-systems, vacuum formers, and air handling subsystems of electrophotographic machines (i.e. copy machines). Flow rate and velocity information can be useful in evaluating vacuum sources, in quality control, and in feedback circuits for pneumatic systems.
A vacuumed-brush cleaning subsystem of a copier machine is a typical pneumatic system. This subsystem cleans the copier's photoconductor by mechanically removing the toner with a fiber brush under negative pressure. The negative pressure produced by a vacuum source such as, for example a blower, forces air supplied by the surrounding atmosphere to carry toner particles from the fiber brush through tubing to a device that filters out and collects the toner particles. The air is discharged back to the surrounding atmosphere. It is common for these subsystems to require a particular range for the air flow rate. If the flow rate is too low or too high, many of the toner particles may not flow properly through the system. The air flow rate in a subsystem due to a particular vacuum source depends on the impedance of the subsystem, which is different for each different subsystem configuration. The impedance of the subsystem stems from the shape of the airway and any instruments and devices in the airway that may affect the airflow. For example, a tube with several 90° bends would have a higher impedance than the same tube configured in a straight line. Therefore, when a new subsystem configuration is to be used, vacuum sources must be evaluated to identify an appropriate vacuum source to produce the desired air flow rate range for the configuration.
A flow nozzle differential pressure meter is used to evaluate the vacuum source for air handling subsystems. The flow nozzle type meter includes two large chambers separated by a flow nozzle. There is an inlet to the chamber upstream from the nozzle. The air handling subsystem is attached to the chamber downstream from the nozzle such that air entering the subsystem must travel first through the upstream chamber, then the nozzle, and finally the downstream chamber before entering the subsystem. The flow nozzle presents an obstruction to flow that causes a pressure differential across the obstruction. The static pressure is measured on either side of the nozzle and the meter is calibrated to correlate the static pressure difference with the flow rate of the air. The air flow rate data are recorded as a function of the voltage supplied to the vacuum source and the sources are compared to uncover the most efficient source.
Flow nozzle type meters are accurate and effective for measuring fluid flow rates. However, due to their large size, the air handling subsystem to be tested must be brought offline. Thus, the setup of the test is inconvenient. The large size and high cost also means that it is inefficient and impractical to incorporate the meter into the subsystem.
The combination of a pitot tube and a static pressure tube in various configurations is another common method for the evaluation of the fluid flow rate of an air passage. The pitot tube is usually a tube with one open end facing into the fluid flow and the other end is fluidly connected to a pressure gage such as, for example a manometer. This pressure is called the impact pressure or the total pressure. The static pressure tube is usually a tube with one or more openings near one end of the tube substantially transverse to the direction of flow. The opposite end of the tube is fluidly connected to a pressure gage which displays the static pressure. The difference between the statice pressure and the impact pressure can be correlated to the velocity of the air by equation 1:
V=[
(2*
g*DP
)/&rgr;]
(1/2)
(1)
Where V is velocity, g is gravity, DP is the difference between static pressure and total pressure, and &rgr; is the density of the air in English units. The density of the air is dependent on the altitude of the measurement relative to sea level.
The flow rate of the air passage can be found by equation 2:
Q=V*A
(2)
Where Q is the flow rate and A is the cross-sectional area of the fluid flow, i.e., the cross-sectional area bound by the inner surface of the passage.
Conventionally, this method is used exclusively in substantially laminar flows. To ensure laminar flow, conventional implementations require that a certain length of the passage preceding and following the measurement be straight and have no substantially abrupt changes in cross-sectional area. This length preceding the measurement should be no less than about 4 times the diameter. The length following the measurement should be no less than about 10 times the diameter. Thus the laminar flow requirement of the pitot tube/static pressure tube method of air flow method makes the instrument too large for the limited space of many machines in which it would otherwise be useful such as, for example electrophotographic machines.
Therefore there is a need for an air flow measuring instrument that can be easily coupled to a pneumatic system or can be incorporated into a system.
SUMMARY OF THE INVENTION
A copier or printing apparatus has a photosensitive member that receives and develops a latent image at a toner station. That station applies toner to the latent image. After the image is transferred to a copy sheet, a cleaner station removes residual toner from the photosensitive member. The cleaning station includes a brush and a vacuum source that remove toner particles and an instrument coupled for measuring the flow of air generated by the vacuum source. In one embodiment the instrument is a permanent part of the copier/printer. In another embodiment, the copier/printer is modified to accept the instrument in the cleaning station. In a more general embodiment, the instrument is adapted for connecting to pneumatic systems other than those of a copier or printer.
The instrument has an in-line adapter including an elongate, substantially rigid hollow body with outer and inner surfaces. The body is open at opposite ends and flow of air in the body is usually only in one direction. The instrument has a pitot tube and a static pressure tube that extend through the walls of the body. The pitot tube extends through the body and has an elongate passageway open at both ends. One open end is known as the impact end. It is inside the body. It faces in a direction substantially opposite to the expected pneumatic flow direction. The impact end is located along the central axis of the body. The other end is outside the body. The static pressure tube also extends through the body. The static pressure tube has an elongate passageway terminating in opposite, open ends. One end is substantially flush with the surface of the in-line adapter. The other end terminates away from the body.
The outer ends of the pitot and static pressure tubes are connected to inputs to a gage. By measuring the pressure differential between the two tubes, one may calculate the flow of air in the body. The air flow measurement can be displayed and can be used as a feedback signal to control the air flow by adjusting the speed of the blower.
REFERENCES:
patent: 6086064 (2000-07-01), Biegelsen et al.
LandOfFree
Air velocity measurement instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air velocity measurement instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air velocity measurement instrument will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3278103