Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation
Reexamination Certificate
2000-12-15
2004-10-26
Chaney, Carol (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
With pressure equalizing means for liquid immersion operation
C429S006000, C418S083000, C418S084000
Reexamination Certificate
active
06808836
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an air supply system for a fuel cell used in a fuel cell system.
2. Description of the Related Art
A fuel cell system used for an automotive vehicle includes a fuel cell and an air supply system for a fuel cell connected to the fuel cell (Japanese Unexamined Patent Publication No. 7-14599).
Specifically, a fuel supply pipe and an air supply pipe for supplying the fuel and the air, respectively, are connected upstream of the fuel cell. The air supply pipe is opened to the atmosphere through a compressor driven by a motor, so that the air constituting an oxygen-containing gas in the atmosphere is compressed to a predetermined pressure in the compression chamber of the compressor and supplied to the fuel cell. This compressor makes up an air supply mechanism as a part of the air supply system for the fuel cell and the compression chamber of the compressor constitutes an air supply chamber.
An air discharge pipe for discharging into the atmosphere the exhaust gas constituting the air from which oxygen is consumed in the fuel cell is connected downstream of the fuel cell. The air discharge pipe is opened to the atmosphere through a regenerator configured integrally with the compressor and, therefore, the exhaust gas is expanded in the regeneration chamber thereby to drive the regenerator and thus assist the compressor. The exhaust gas in the air discharge pipe is produced by reaction in the fuel cell, and therefore contains water vapor generated in the fuel cell as well as water vapor from the atmosphere. For this reason, the air supply system for the fuel cell includes a liquid separator in addition to the compressor and the regenerator described above. The liquid separator is connected with an air discharge pipe, and separates the water vapor as water from the exhaust gas passing through the air discharge pipe. The water thus produced is stored in a storage vessel and then injected into the compression chamber of the compressor by a pump to seal and cool the compression chamber. The liquid separator, the storage vessel and the pump make up a water supply mechanism as the remaining part of the air supply system for the fuel cell. In this way, the air supply system for the fuel cell improves the compression efficiency of the compressor and hence the power generation efficiency of the fuel cell.
In the conventional air supply system for a fuel cell described above, however, the compressor and the regenerator, though integrated with each other, are separated from the liquid separator, the storage vessel and the pump. Therefore, the structure is not sufficiently simplified, thereby increasing the production cost of the air supply system for the fuel cell. Especially, the need for the liquid separator tends to complicate the system. This air supply system for the fuel cell, if used for an automotive vehicle, is unavoidably disadvantageous from the viewpoint of mountability due to its large size.
SUMMARY OF THE INVENTION
The present invention has been developed to solve this problem and the object thereof is to provide a sufficiently simplified air supply system for a fuel cell which is low in production cost and which is capable of maintaining the power generation efficiency of the fuel cell.
According to one aspect of the present invention, there is provided an air supply system for a fuel cell comprising an air supply mechanism including an air supply chamber capable of supplying an oxygen-containing gas to a fuel cell and a water supply mechanism for supplying water to the air supply mechanism to close and cool the air supply chamber, wherein the water supply mechanism supplies water to the air supply mechanism by separating it from the exhaust gas discharged from the fuel cell, and the air supply mechanism is integrated with the water supply mechanism.
In the air supply system for a fuel cell according to this aspect of the invention, the water supply mechanism separates water from the exhaust gas discharged from the fuel cell, and the water is supplied to the air supply mechanism. Specifically, the water supply mechanism functions as a liquid separator, a storage vessel and a pump in the prior art. Since the water supply mechanism is integrated with the air supply mechanism, the structure is sufficiently simplified and therefore the production cost of the air supply system for the fuel cell can be reduced. Especially the air supply system for the fuel cell, if used with an automotive vehicle, can be advantageously mounted on the vehicle due to its simplicity.
In this way, with the air supply system for the fuel cell according to the invention, the power generation efficiency of the fuel cell can be maintained while sufficiently simplifying the structure, and reducing the production cost, of the fuel cell.
According to another aspect of the invention, there is provided an air supply system for a fuel cell wherein at least the drive source such as a motor for driving the air supply mechanism is also integrated with the air supply mechanism and the water supply mechanism. By doing so, the structure is further simplified for a further reduced production cost. This simplified structure also improves the mountability of the air supply system for the fuel cell, if used in an automotive vehicle.
The air supply mechanism includes an air supply chamber capable of supplying an oxygen-containing gas to the fuel cell. The air supply mechanism can be of any of various types including a scroll, a vane, a screw, a root and a piston type. The scroll-type air supply mechanism, the vane-type air supply mechanism and the piston-type air supply mechanism, in which the volume of the closed space is reduced, implement the air supply chamber as a compression chamber. The screw-type air supply mechanism and the root-type air supply mechanism, on the other hand, do not reduce the volume of the closed space but supply the gas under pressure and, therefore, implement the air supply chamber as a pressurized supply chamber.
The air supply mechanism is desirably capable of changing the amount of the oxygen-containing gas per unit power. By doing so, the amount of the oxygen-containing gas supplied to the fuel cell can be changed as required, and wasteful power consumption can be avoided for a further improved mechanical efficiency.
The water supply mechanism can include a liquefying unit for liquefying, into water, the water vapor contained in the exhaust gas discharged from the fuel cell. The liquefying unit can be of a centrifugal separation type in which a turbulent flow of the exhaust gas is generated by centrifugal force and collides with the peripheral surface for liquefying the water vapor into water.
On the other hand, the water supply mechanism can include a regeneration mechanism unit for assisting the air supply mechanism by expanding the exhaust gas. The regeneration mechanism includes a regeneration chamber capable of supplying the water generated by expansion of the exhaust gas to the air supply mechanism. Specifically, the exhaust gas is reduced in temperature by expansion, and the water vapor contained in it is liquefied into water. Thus, the regeneration mechanism can function as a water supply mechanism. By doing so, water is supplied from the regeneration chamber of the regeneration mechanism to the air supply mechanism to close and cool the air supply chamber. Therefore, the regeneration mechanism is easily integrated with the air supply mechanism, and a need for a liquid separator is eliminated. In this way, the system is further simplified and the production cost of the air supply system for a fuel cell can be further reduced. In this case, the power generated by the regeneration mechanism adds to the power for activating the air supply mechanism. Specifically, the regeneration mechanism recovers the residual energy from the exhaust gas of the fuel cell and adds it to the power of the air supply mechanism. As a result, wasteful power consumption is avoided for a further improved mechanical efficiency.
T
Ban Takashi
Kawaguchi Ryuta
Mori Hidefumi
Sowa Masato
Chaney Carol
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Mercado Julian
Morgan & Finnegan , LLP
LandOfFree
Air supply system for fuel cell does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air supply system for fuel cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air supply system for fuel cell will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3276832