Air separation process and system with gas turbine drivers

Power plants – Combustion products used as motive fluid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06345493

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
Gas turbines and cryogenic air separation processes can be integrated in highly efficient systems for the production of atmospheric gas products. Such systems also can be used to generate electric power in which the gas turbine/air separation system is integrated with a gasification process to generate fuel gas for the gas turbine by the gasification of coal using oxygen from the air separation process. These power generation processes are known as integrated gasification combined cycle (IGCC) processes in which the gas turbine drives an electric generator and the gas turbine exhaust is used to generate steam for a steam turbine which drives another electric generator. In the production of oxygen and/or nitrogen, the pressurized air feed for the cryogenic air separation process can be provided partly or completely by the gas turbine compressor. In both IGCC and air separation systems, nitrogen from the air separation process can be introduced into the gas turbine combustor for additional energy recovery and control of NO
x
formation, or the nitrogen can be work expanded to drive other process compressors or generate additional electric power.
Comprehensive reviews of integration methods for gas turbines and air separation systems are given in a paper entitled “Next-Generation Integration Concepts for Air Separation Units and Gas Turbines” by A. R. Smith et al in
Transactions of the ASME
, Vol. 119, Apr. 1997, pp. 298-304 and in a presentation entitled “Future Direction of Air Separation Design for Gasification, IGCC, and Alternative Fuel Projects” by R. J. Allam et al, IChem
E
Conference on Gasification, 23-24 Sep. 1998, Dresden, Germany.
A common mode of integration between the gas turbine and air separation units is defined as full air and nitrogen integration. In this operating mode, all air for the gas turbine combustor and the air separation unit is provided by the gas turbine air compressor which is driven by the gas turbine expander, and nitrogen from the air separation unit is utilized in the integrated system. Full air and nitrogen integration is described in representative U.S. Pat. Nos. 3,731,495, 4,224,045, 4,250,704, 4,631,915, and 5,406,786, wherein the nitrogen is introduced into the gas turbine combustor. Full air and nitrogen integration also is described in U.S. Pat. Nos. 4,019,314 and 5,317,862, and in German Patent Publication DE 195 29 681 A1, wherein the nitrogen is work expanded to provide work of compression for the air feed or to generate electric power.
The gas turbine and air separation unit can operate in an alternative mode, defined as partial air integration with full nitrogen integration, in which a portion of the air feed for the air separation unit is provided by the gas turbine compressor and the remainder is provided by a separate air compressor driven by an independent power source. Nitrogen for the air separation unit is introduced into the gas turbine combustor or is otherwise work expanded. This operating mode is described in representative U.S. Pat. Nos. 4,697,415; 4,707,994; 4,785,621; 4,962,646; 5,437,150; 5,666,823; and 5,740,673.
In another alternative, nitrogen integration is used without air integration. In this alternative, the gas turbine and air separation unit each has an independently-driven air compressor, and the nitrogen from the air separation unit is used in the gas turbine combustor. This option is described in representative U.S. Pat. Nos. 4,729,217; 5,081,845; 5,410,869; 5,421,166; 5,459,994; and 5,722,259.
U.S. Pat. No. 3,950,957 and Great Britain Patent Specification 1 455 960 describe an air separation unit integrated with a steam generation system in which a nitrogen-rich waste stream is heated by indirect heat exchange with hot compressed air from the air separation unit main air compressor, the heated nitrogen-rich stream is further heated indirectly in a fired heater, and the final hot nitrogen-rich stream is work expanded in a dedicated nitrogen expansion turbine. The work generated by this expansion turbine drives the air separation unit main air compressor. The nitrogen expansion turbine exhaust and the combustion gases from the fired heater are introduced separately into a fired steam generator to raise steam, a portion of which may be expanded in a steam turbine to drive the air separation unit main air compressor. Optionally, the combustion gases from the fired heater are expanded in a turbine which drives a compressor to provide combustion air to a separate fired heater which heats the nitrogen-rich stream prior to expansion.
An alternative use for high pressure nitrogen from an air separation unit integrated with a gas turbine is disclosed in U.S. Pat. No. 5,388,395 wherein the nitrogen is work expanded to operate an electric generator. The cold nitrogen exhaust from the expander is mixed with the inlet air to the gas turbine compressor thereby cooling the total compressor inlet stream. Alternatively, low pressure nitrogen from the air separation unit is chilled and saturated with water in a direct contact cooler-chiller, and the chilled, saturated nitrogen is mixed with the inlet air to the gas turbine compressor.
U.S. Pat. Nos. 5,040,370 and 5,076,837 disclose the integration of an air separation unit with high-temperature processes which use oxygen, wherein waste heat from the process is used to heat pressurized nitrogen from the air separation unit, and the hot nitrogen is work expanded to generate electric power.
European Patent Publication EP 0 845 644 A2 describes an elevated pressure air separation unit in which the pressurized nitrogen-rich product is heated indirectly by the combustion of low pressure fuel, and the hot nitrogen is work expanded to produce power or drive gas compressors within the air separation unit.
In the production of oxygen in remote areas without accessible electric power grids, feed air compression for an air separation unit can be provided by gas turbine drivers if sufficient fuel is available. In remote areas having industrial operations which require oxygen, inexpensive natural gas often is available and can be used as gas turbine fuel. Industrial operations in such remote areas typically pay a premium for purchased equipment, and therefore simple, reliable equipment is preferred.
An air separation plant integrated with a gas turbine, whether it operates in a remote area or in a populated industrialized area, is subject to various off-design conditions or periods during which the plant operates at lower efficiency or below the design oxygen production rate. These periods occur due to changes in ambient air temperature and/or the cyclic demand for oxygen product. The equipment selection and process design of an integrated air separation plant/gas turbine system therefore must address steady-state operation at design capacity as well as operation at off-design or turndown conditions. This can be difficult to achieve in plants designed for operation in remote locations, particularly in plants with total air integration, because the need for simplified equipment can reduce the number of operating alternatives or degrees of freedom needed for efficient operation at off-design conditions.
The invention disclosed below and defined by the claims which follow addresses the need for improved designs and methods of operation for integrated air separation plant/gas turbine systems, particularly for the operation of such systems in remote areas at off-design or turndown conditions.
BRIEF SUMMARY OF THE INVENTION
The invention is a method for the separation of air which comprises (a) compressing ambient air in a first air compressor to provide a first and a second hot pressurized air feed stream; (b) compressing ambient air in a second air compressor to provide a third hot pressurized air feed stream; (c) combusting fuel with the first hot pressurized air feed stream in a gas turbine combustor, withdrawing therefrom a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Air separation process and system with gas turbine drivers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Air separation process and system with gas turbine drivers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air separation process and system with gas turbine drivers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2953679

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.