Brushing – scrubbing – and general cleaning – Machines – With air blast or suction
Reexamination Certificate
2001-10-04
2004-04-27
Snider, Theresa T. (Department: 1744)
Brushing, scrubbing, and general cleaning
Machines
With air blast or suction
C015S344000, C015S383000
Reexamination Certificate
active
06725500
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to air recirculating type surface cleaning devices, in which the recirculated air flow may be used to remove debris and/or moisture from the cleaning surface.
It is known to provide a recirculating type floor cleaning or drying apparatus in which at least some of the exhaust air stream is recirculated through a suction air stream. In U.S. Pat. No. 3,964,925, to Burgoon, an apparatus for cleaning carpets is disclosed having an exhaust air nozzle located near the vacuum nozzle. The device disclosed in Burgoon utilizes the heated exhaust air (from the vacuum motor) to aid in drying floor coverings. The exhaust air nozzle or opening of Burgoon, if provided, includes a moveable rear wall that pivots about a hinge. Burgoon also states that “the exhaust air nozzle can be eliminated.”
In U.S. Pat. No. 4,884,315, to Ehnert, a closed circuit vacuum apparatus having an air recirculation duct is disclosed. Ehnert discloses a device in which the recirculation air passes through the carpet to provide a pneumatic agitation process.
In U.S. Pat. No. 5,457,848, to Miwa, a recirculating type cleaner is disclosed having a dust collecting port including a suction port and an outlet in which downstream flow of a fan is recirculated, discharged through the outlet, and drawn into the suction port. Several devices said to be prior art are also discussed in Miwa. FIGS. 1A and 1B of the Miwa patent show a rotary brush and a rotating vibrator device, respectively, in the exhaust stream adjacent to the suction line. Miwa FIG. 1E shows an exhaust line adjacent to a much larger suction area. Miwa FIGS. 1C and 1D disclose a suction compartment surrounded on at least two sides by exhaust lines, where the exhaust is discharged at an angle in Miwa FIG. 1C. Miwa FIGS. 2B and 2C disclose prior art recirculating type cleaners with valves for diverting a portion of the air flow so that the recirculation may be less than 100%. FIGS. 3A and 3B of Miwa show a recirculating type cleaner having a central jet nozzle terminating at an outlet for discharging recirculating flow. A dust collecting head includes a suction port that surrounds the nozzle outlet.
In U.S. Pat. No. 5,392,492, to Fassauer, an air-floated vacuum cleaner is disclosed that includes an impeller and an agitator below the impeller. Air to lift this device is provided through a plurality of air inlet openings and discharged under pressure by a second air impeller and eventually to the surface of the floor.
In U.S. Pat. No. 3,268,942, to Rossnan, a suction cleaning nozzle is disclosed that utilizes the exhaust air from the machine discharged through a plurality of finger-like air directing tubes to comb and set up the carpet so that the suction action can remove the dust and dirt from the pile and the base of the floor covering.
In U.S. Pat. No. 5,553,347, to Inoue, et al., an upright floating vacuum cleaner is disclosed having a central exhaust surrounded by a suction air inlet port.
Although it's known to utilize exhaust air to assist in drying and debris removal from floor coverings in a recirculating cleaner, there exists a need for an air recirculating type cleaning device that utilizes the collective energy of both the exhaust and suction lines to obtain superior results in less time and that conserves energy resources in the process.
SUMMARY OF INVENTION
The present invention recognizes and addresses the foregoing considerations, and others, of prior art constructions and methods. Accordingly, it is an object of the present invention to provide a novel cleaning and drying device.
It is also an object of the present invention to utilize the combined energy in the exhaust line and the suction line of a recirculating type vacuum cleaner to significantly increase the suction in the suction line and the air flow across the cleaning surface and into the suction port.
It is another object of the present invention to utilize the heat from the vacuum motor and heat generated by a unique synergy created between the exhaust and suction ports due to their novel configuration and orientation with respect to each other to thoroughly and quickly dry surfaces and to remove debris quickly and efficiently.
It is a still further object of the present invention to facilitate the effectiveness of a recirculating cleaning device by focusing the exhaust air at the point where the suction line can immediately remove particles and dust that are dislodged from the very base ends of the carpet fibers and web.
Another object of the present invention is to significantly increase the overall suction power of a recirculating type vacuum unit so that air, moisture, and debris is sucked into the suction line from several, if not all, directions, rather than being blown away from the cleaning device by the exhaust air stream.
Another object of the present invention is to provide an adjustable mechanism for controlling the diversion of at least a portion of the exhaust port airflow.
Another object of the present invention is to provide various mechanisms for causing increased and/or modified vibration of the vacuum housing and thus the cleaning surface, specifically carpet fibers, to assist in removing dust, debris, and/or moisture.
Another object of the present invention is to increase the suction power of a recirculating type vacuum unit without increasing energy use from the vacuum motor.
Another object of the present invention is to provide a vacuum cleaning unit that provides increased suction without the vacuum nozzle and housing being sucked downward toward the cleaning surface, permitting an operator to move the vacuum unit across the cleaning surface with less effort via a gliding effect.
Another object of the present invention is to provide a vacuum unit with a reduced number of moving parts and thus a reduced maintenance schedule and a longer useful life.
Another object of the present invention is to provide a highly effective yet low cost vacuum unit.
Another object of the present invention is to provide a vacuum unit that can vacuum dust, debris, and moisture from clothes, curtains and other structurally movable surfaces without sucking the material to be cleaned into the vacuum unit.
Another object of the present invention is to provide a vacuum unit that can remove dust, debris, and moisture from an animal's hair without sucking the animal's skin into the unit.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the invention and, together with the description serve to explain the principles of the invention.
Some of these objects are achieved by providing a fluid recirculating cleaning device having an exhaust port defining an exhaust port longitudinal axis. The exhaust port has a fluid source end and an exhaust end defining a first cross-sectional area. A suction port includes a suction port longitudinal axis, a fluid exit end and a fluid entrance end defining a second cross-sectional area that is greater than the first cross-sectional area. The suction port defines a second outer surface that extends from the entrance end toward the fluid exit end. A vacuum blower motor is disposed between the exhaust and suction ports for creating fluid flow away from the vacuum motor and toward the exhaust port exhaust end. The vacuum blower sucks fluid in through the suction port fluid entrance end. The exhaust port exhaust end is recessed from the suction port fluid entrance end, and the exhaust and suction ports are located with respect to one another so that fluid flow from the exhaust port will be effectively drawn into the suction port.
In one embodiment, the exhaust port longitudinal axis and the suction port longitudinal axis are angled with respect to a bisecting axis. The exhaust port longitudinal axis and the suction port longitudinal axis may be separated by an angle of approximately 25 degrees. In one preferred embodiment, the fluid from the exhaust port exhaust end is discharged toward and impinges up
Allen Donavan J.
Allen Mark W.
Nelson Mullins Riley & Scarborough
Snider Theresa T.
Vortex, L.L.C.
LandOfFree
Air recirculating surface cleaning device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air recirculating surface cleaning device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air recirculating surface cleaning device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3243262