Gas separation: processes – With control responsive to sensed condition – Electric or electrostatic field
Reexamination Certificate
2002-10-31
2003-09-23
Chiesa, Richard L. (Department: 1724)
Gas separation: processes
With control responsive to sensed condition
Electric or electrostatic field
C096S016000, C096S057000, C096S224000, C096S019000, C422S024000, C422S121000, C422S186040, C055SDIG003, C095S069000
Reexamination Certificate
active
06623544
ABSTRACT:
BACKGROUND OF THE INVENTION
INCORPORATION BY REFERENCE: Applicant(s) hereby incorporate herein by reference, any and all U. S. patents, U.S. patent applications, and other documents and printed matter cited or referred to in this application.
1. Field of the Invention
This invention relates generally to air filtering systems and more particularly to a system and method for providing air purified of chemical and biological agents.
2. Description of Related Art
The following art defines the present state of this field:
Finlan, et al., U.S. Pat. No. 4,997,278 describes a sensor using the principle of surface plasmon resonance (SPR) to monitor the progress of the reaction between a sample and a sensitive layer (for example an antibody layer). The layer is applied to the rear surface of a metallic film formed on the surface of an optically transmissive component in the form of a hemicylindrical lens and slide. Collimated light from a source is applied via a lens which focuses the incoming beam to a focus at a point to form a fan-shaped spread of light incident at the point. The light is internally reflected at the point, and emerges from the component to be applied to a dectector array which latter is electronically scanned. The angle of incidence of the light at the point is such as to span that angle which gives rise to surface plasmon resonance, together with a range of angles thereabout so that the progress of the resonant condition, as the reaction between the sample and the sensitive layer proceeds, can be monitored. Bare, et al. U.S. Pat. No. 5,054,480 An air flow and filtration control system in the form of a headgear which is worn by a physician during a surgical procedure, a technician during an assembly process, or any other user wherein a controlled air flow and air filtration is required or desired. The flow through system includes a relatively rigid, open frame, skeleton headgear structure which substantially surrounds the head of the wearer. The structure includes ductwork and is adjustably attached to a headband formed of straps which are adapted to snugly engage the head of the wearer. A plurality of fans or other air moving devices are mounted in the structure. The fans are positioned to move air through the integral ducts in the structure. A shroud (or hood) is draped over and attached to the structure in such a fashion as to completely cover the structure and to cover at least a portion of the wearer in order to maintain sterile or controlled conditions. A relatively planar transparent screen or “window” is provided at the front of the apparatus for substantially undistorted viewing. Typically, the transparent screen is mounted in the shroud and is removable therewith. Filtration devices are formed or mounted in the shroud so as to be disposed adjacent to the fans when the shroud is placed over the structure. A suitable power supply, such as a battery pack or the like, is used to selectively power the fans. It is anticipated that at least the shroud (and the components mounted thereto) will be disposable.
Widerstrom, et al. U.S. Pat. No. 5,535,741 discloses face mask is provided which is adapted to be mounted an inhalation device, e.g., an inhaler or spacer, having a body. The mask includes an annular adaptor part which is to be connected to one end of the body, and a funnel-shaped face engaging portion having a narrow end that is joined to one end of the adaptor part. The wide end of the face engaging portion has a free edge that is adapted to engage the face of an infant around the infant's mouth and at least a part of the infant's nose, and is resilient so that it is adaptable to the shape of the infant's face. The free edge of the wide end of the face engaging part is provided substantially entirely in a plane which forms an angle of about 10.degree.-25.degree. with a plane perpendicular to the extended longitudinal axis of the adaptor part.
Murphy, U.S. Pat. No. 5,590,646 discloses an emergency safety mask including a flexible porous material capable of readily absorbing liquids and passing air therethrough, elongated elastic generally formed as the letter “X” and joined at the intersection thereof is affixed to the flexible porus material, with two arms of the “X” affixed to the upper portion of the material and two arms being adapted to be affixed to the lower portion of the material, forming a flexible circularly-shaped band adapted to be placed over the head of a user. Each of the upper bands includes a clip device as part of the affixing mechanism suitable for retaining a miniature source of light (flashlight), and a second clip device removably retains a frangible liquid container.
Guiseppi-Elie, U.S. Pat. No. 5,766,934 describes chemical and biological sensors that convert the chemical potential energy of an analyte into a proportionate electrical signal through the transducer action of a microfabricated device with an integral electroconductive polymer film. The microsensor devices possess a coplanar arrangement of at least one, and typically three, microfabricated interdigitated microsensor electrode arrays each with line and space dimensions that may range from 2-20 .mu.m and is typically 10 .mu.m, a platinized platinum counter electrode of area at least 10 times the area of the interdigitated microsensor electrode array and a chloridized silver/silver chloride reference electrode. Chemical and biological sensors constructed according to the present invention employ a thin electrically conducting polymer film that is specifically attached via covalent bond formation to the interdigitated microsensor electrode component of the devices. The electrically conducting polymer film is formed in three layers, the first layer possesses high electrical conductivity and is covalently attached to the device surface, the second layer possess an inorganic catalyst and is covalently attached to the first, and the third layer possesses an indicator molecule which may be a bioactive molecule such as an enzyme or member of specific binding pair of biological origin and is itself covalently attached to the second layer. Binding of an analyte or member of the specific binding pair reagent may result in a change in the electrical impedance (resistance and capacitance or both) of the highly electrically conducting layer. The electrical change in the polymer layers is a sensitive measure of the extent of binding of the binding agent and forms an analytical signal for the binding agent.
Krivoshlykov, U.S. Pat. No. 6,016,197 describes an optical spectrum analyzer that is based on optical processing of the far field interference pattern from two beams irradiated by light transmitting waveguides. The spectrum analyzer can operate in UV, VIS, NIR and MIR ranges of spectrum and it can be based on either optical fibers (multimode or single-mode) or integrated optical waveguides. It has many important applications, for example, as a simple, compact and inexpensive spectrum analyzer used with fiber optic chemical and biological sensors.
Tanaka, et al. U.S. Pat. No. 6,117,686 describes a method by which harmful trace gases in a gaseous mixture containing as such harmful halogen gases, halogenated hydrogen gases, acid gases, oxidizing gases, basic gases, organic acid gases, especially halogen gases or halogenated hydrogen gases, are detected by using tetraphenylporphyrin (TPP) and quantitated from a calibration curve constructed therefrom, where the range of detectable concentration is made adjustable so that harmful gas can be detected and quantitated over a broad range of concentration. Furthermore, this invention also provides a method for extending the accessible range of gas concentration by adjusting the sensitivity of the detector material via control of tetraphenylporphyrin concentration in matrix polymer of the detector material, by controlling the gas concentration range via measurement at a specific wavelength(s), and by the use of a plurality of detector materials with pre-set assay sensitivity.
Yang, et al., U.S. Pat. No. 6,316,268 describes an article
Chiesa Richard L.
Gene Scott-Patent Law & Venture Group
LandOfFree
Air purification system and method of operation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air purification system and method of operation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air purification system and method of operation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3025479