Heat exchange – With timer – programmer – time delay – or condition responsive... – Having heating and cooling capability
Reexamination Certificate
2001-06-13
2004-09-14
Ford, John K. (Department: 3753)
Heat exchange
With timer, programmer, time delay, or condition responsive...
Having heating and cooling capability
C165S042000, C165S043000, C165S103000, C454S156000, C454S160000, C454S161000, C237S01230A, C237S01230B, C236S013000, C251S250500, C251S294000
Reexamination Certificate
active
06789617
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an air mixing damper apparatus and an air conditioning apparatus for vehicles, and in particular, relates to an air mixing damper apparatus and an air conditioning apparatus for vehicles which can linearly alter the temperature of the discharged air by operation of a lever of an actuator driving an air mixing damper.
DISCUSSION OF THE BACKGROUND
As is well known, an air conditioning apparatus for vehicles incorporates an inside air/outside air box comprising an inside/outside air switching damper that selectively switches introduced air to either inside air or outside air, a blower unit having a blower fan for circulating the introduced air, a cooler unit incorporating an evaporator for exchanging heat between a refrigerant and the introduced air passing therethrough, and an air conditioning unit having a heater unit.
The heater unit generally has a heater core inside a heater unit case for heating the introduced air passing therethrough, an air mixing damper apparatus for regulating the flow volume of the introduced air passing through the heater core, and a plurality of air outlets opening from the heater unit case and respectively provided with dampers.
With the air mixing damper apparatus, a plate door type air mixing damper for opening and closing an air introducing face of the heater core is connected by a link to a rotation type lever of an actuator for driving the air mixing damper. When an occupant operates a lever or the like used for setting the temperature, on the control panel provided within the vehicle compartment, the actuator is driven and the actuator lever rotates and by way of the link, starts the operation of the air mixing damper. The opening of the air mixing damper adjusts the amount of introduced air passing through the heater core and also adjusts the temperature of the discharged air.
That is to say, in the fully closed position with the air intake face of the heater core closed off, cold air from an evaporator located upstream thereof is supplied in its unchanged state as discharged air, and with an increase in opening of the air mixing damper the amount of air to be introduced passing through the heater core increases so that the temperature of the discharged air rises. When the air mixing damper is in a fully opened position, for example all of the cold air from the evaporator is passed through the heater core so that the temperature of the discharged air is increased.
However, in the case of the aforementioned conventional air mixing damper apparatus, at the time when the air mixing damper starts to open and at the time when the opening is completed, that is, during the interval that the air mixing damper is opened from a fully closed to a slightly opened position, and during the interval from a little before the fully open position through to a fully opened position, there is a problem that, compared to other positions, the temperature changes at these times is severe. That is to say, looking at
FIG. 17
showing the relationship between the opening of the air mixing damper and the temperature of the discharged air, the change in temperature corresponding to movement of the actuator lever is extremely sharp at the initial opening stage where the opening of the air mixing damper is slight, and at the final opening stage where the air mixing damper is at a little before the fully open position through to the fully opened position.
This kind of phenomenon is a problem which generally arises in cases where the air mixing damper is linearly rotated together with an actuator lever. To explain simply, this is because at the time when the air mixing damper starts opening and when opening is completed it responds sensitively, and at other times when it is opened midway the response is slow.
Accordingly, if in this way it is not possible to obtain a linear change in the temperature of the discharged air with respect to the operation of an actuator lever, that is, with respect to operation by an occupant, instances arise in which it is not possible to achieve air conditioning as intended by the occupant.
For the purpose of counteracting this, it has been considered to drive the actuator so that it rotates slowly at times when the air mixing damper is starting to open and when it completes opening. However there is a problem in that such an improvement to the actuator is accompanied by higher costs.
Further, the provision of a baffle has also been considered in order to effect an appropriate change in temperature. However, there is a problem in that a decrease in air volume as a result of a baffle is unavoidable.
SUMMARY OF THE INVENTION
Accordingly the present invention provides an air mixing damper apparatus and an air conditioning apparatus for vehicles where the temperature of the discharged air can be changed linearly with respect to the operation of an actuator lever.
In order to resolve the abovementioned problems, a first aspect of the present invention is an air mixing damper apparatus characterized in that there is provided between a plate door type air mixing damper for opening and closing an air introducing face of a heater core, and a rotation type lever of an actuator for driving the air mixing damper, a mechanism for adjusting rotational speed of the air mixing damper to linearly change the temperature of discharged air with respect to the operation of the lever of the actuator. With such a construction, it becomes possible to linearly change the temperature of the discharged air with respect to the operation of the actuator lever.
A second aspect of the present invention is an air mixing damper apparatus characterized in that there is provided between a plate door type air mixing damper for opening and closing an air introducing face of a heater core, and a rotation type lever of an actuator for driving the air mixing damper, a mechanism for adjusting rotational speed at an initial opening stage and a final opening stage of the air mixing damper, to a speed lower than at an intermediate opening stage. With such a construction, it becomes possible to lower the change amount with respect to the movement of the actuator lever at the initial opening stage and the final opening stage of the air mixing damper, to a less than at the intermediate opening stage.
With a third aspect of the present invention, an air mixing damper apparatus of the first or second aspects is characterized in that the mechanism for adjusting rotational speed comprises; a cam provided in the air mixing damper and a pin provided on the lever of the actuator for engaging with the cam. With such a construction, there is no longer a need to improve the actuator.
With a fourth aspect of the present invention, the air mixing damper apparatus of the third aspect is characterized in that the cam incorporates a guide path for guiding the pin of the lever of the actuator, and the guide path has a first guide path for effecting control at an initial opening stage of the air mixing damper, a second guide path for effecting control at an intermediate opening stage of the air mixing damper, and a third guide path for effecting control at a final opening stage of the air mixing damper. With such a construction, it becomes possible to form a first guide path, a second guide path and a third guide path, in accordance with the air mixing damper.
With a fifth aspect of the present invention, the air mixing damper apparatus of the third aspect is characterized in that the cam has an opening portion with a guide path for guiding the pin of the lever of the actuator provided around the periphery thereof, and the guide path has a first guide path for effecting control at an initial opening stage of the air mixing damper, a second guide path for effecting control at an intermediate opening stage of the air mixing damper, and a third guide path for effecting control at a final opening stage of the air mixing damper. With such a construction, it becomes possible to form, for example, a first guide path, a second guide path and a third guide path in
Hashizume Yoshihiro
Matsubara Shiro
Noyama Hideto
Ford John K.
Mitsubishi Heavy Industries Ltd.
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
LandOfFree
Air mix damper device and vehicle air conditioner does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air mix damper device and vehicle air conditioner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air mix damper device and vehicle air conditioner will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3219076