Ventilation – Having inlet airway – Including specific air distributor
Reexamination Certificate
1998-12-08
2001-07-17
Joyce, Harold (Department: 3749)
Ventilation
Having inlet airway
Including specific air distributor
C454S306000
Reexamination Certificate
active
06261174
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to an air flow control apparatus and more particularly to devices for regulating the flow of hot and cold air into a room.
BACKGROUND OF THE INVENTION
Registers for controlling the flow of air into a room are well known and typically include a frame having a number of vents through which air is dispensed into the room. In addition, the register typically includes a damper that is connected to the body by a manually controllable lever that allows the user to open and close the register. A typical building, such as a home, will have many such registers for dispensing air into particular rooms and, by selectively opening and closing certain registers throughout the home, the user can control which rooms receive conditioned air. Such registers often are located near the bottom of the wall, such that air is dispensed near the floor of the room. Although preferred when providing warm conditioned air, such an arrangement inefficiently dispenses cool conditioned air.
It is generally known that dispensing cool air near the ceiling of a room results in more efficient distribution of cool conditioned air, but known systems that implement such a feature are bulky, inefficient, expensive, and unattractive. For example, one known system disclosed in U.S. Pat. No. 4,850,266 includes a central air uptake attachment having a housing with upper and lower outlets. Together with the interior-facing side of a room wall, the housing defines an internal chamber for channeling air from the room wall air outlet to the upper and/or lower outlets. The housing must be glued to the wall or sealed in some other fashion to prevent air flow from escaping at the seams of the apparatus, thus making removal and/or repositioning of the apparatus difficult. And, when mounted, the housing unattractively protrudes into the room, thus inconveniently occupying a portion of the room. Moreover, such a system is limited as it really is only effective where a room has a floor vent.
In addition to its burdensome construction, such a system exhibits unacceptable levels of conditioned air losses, whether warm or cool air is desired. For example, imperfect seals between the apparatus and the wall can lead to inefficient distribution of cool air near the floor of the room. Further, because the conditioned air travels through an additional duct that is located away from the existing main air carrying passage of the building, losses are realized due to the long journey that the air must complete prior to being dispensed into the room. Losses can result from stagnating air within the uptake channel as well as in the main air carrying passage. Overall, because the upper and lower outlets are disposed away from the wall and spaced from the room wall air outlet, this bulky and relatively expensive apparatus, including the uptake attachment, disadvantageously provides inefficient communication of air between the air supply and the room.
As a result, the field of air flow control devices is in need of a self-contained apparatus that is retrofittable to an existing air dispensing outlet formed in a wall, is easy to operate and relatively inexpensive to manufacture. In addition, an apparatus is desired that efficiently distributes both hot and cold air into the room throughout existing outlets, the outlets preferably being situated at or near the floor and ceiling of the room.
What is needed is an apparatus that can selectively and efficiently distribute cool air near the top of the room when cooling is desired and hot air near the bottom of the room and which is integral with the wall in which it is mounted. What is further needed is an apparatus that has a bottom register that utilizes more than one damper to provide a better seal to minimize air flow losses during operation.
SUMMARY OF THE INVENTION
An air flow control apparatus that includes an air supply in communication with a lower air outlet that is a flow controller that has a pair of independently manipulable air diverters and an upper air outlet with the outlets both integrally mounted in the wall and interconnected by a passage formed within the wall. One of the air diverters is an outlet diverter that can be moved between a closed position to prevent air from the supply from flowing out the lower outlet into the room and an open position that allows air from the supply to flow out the lower outlet into the room near the floor. The other of the air diverters is a passage diverter that can be moved between a closed position to prevent air from the supply from flowing through the passage to the upper outlet and an open position that permits air from the supply to flow through the passage to the upper outlet where it can be introduced into the room near the ceiling. The supply typically comprises a forced-air heater, such as a gas heater, an LP heater or the like, that has a duct, typically made of metal or plastic, that extends from the heater to the room equipped with the air flow control apparatus.
The lower outlet preferably has three diverter position settings. In a first setting, typically used for heating the room, the outlet diverter is located in its open position and the passage diverter is located in its closed position to permit air to flow out the lower outlet while preventing air flow to the upper outlet. Preferably, when in its fully open position, the outlet diverter also prevents air flow to the passage providing a seal that impedes air flow and which is redundant to that of the passage diverter.
In a second setting, typically used for cooling the room, the outlet diverter is located in its closed position to prevent air flow out the lower outlet and the passage diverter is located in its open position to permit air to flow through the passage to the upper outlet. In a third setting, typically used for blocking all air flow to the room, the diverters are both disposed in their closed position.
The lower outlet preferably comprises a register that has a frame or housing which includes a perforate grill that preferably is comprised of a plurality of pairs of spaced apart louvers or slots through which air can flow. The lower outlet also has an inlet port in the wall that is in air-flow communication with the supply and an outlet port in the wall that is in air-flow communication with the passage leading to the upper outlet. The diverters preferably each comprise a damper attached to a lever, pivotally coupled to the frame, that is manually grasped and manipulated during use.
The upper outlet can also comprise a register that preferably is equipped with an outlet diverter or damper but need not be equipped with any diverter or damper. The upper outlet has a frame that includes a perforate grill and an inlet port within the wall that is in air-flow communication with the passage. The upper outlet preferably has a cap or the like within the wall that blocks air from flowing farther up the wall.
In a preferred embodiment of the lower outlet, the passage diverter is located above the outlet diverter between the outlet diverter and the upper outlet. The frame of the lower outlet preferably includes a header adjacent the passage that provides a seat for a seal against which the passage diverter bears when it is disposed in its closed position to better prevent air from flowing to the upper outlet. If desired, the lower outlet can have more than two diverters or dampers, such as if it is desired to provide the capability to direct flow to other rooms.
The lower outlet is installed in a hole in the wall and preferably has a flange about its grill that abuts the wall and permits fasteners to fasten the flange to the wall. The upper outlet is similarly installed. The lower outlet preferably is located adjacent the floor and can be located at about floor level so as to efficiently distribute hot air into the room so it mixes well with the air already in the room. If desired, the lower outlet can be located in the floor preferably adjacent the wall.
The upper outlet preferably is located adjacent or at the ceiling so as
Boyle Fredrickson Newholm Stein & Gratz S.C.
Joyce Harold
LandOfFree
Air flow control apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air flow control apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air flow control apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2508782