Refrigeration – With indicator or tester – Operatively correlated with automatic control
Reexamination Certificate
2002-02-06
2003-07-15
Doerrler, William C. (Department: 3744)
Refrigeration
With indicator or tester
Operatively correlated with automatic control
C062S132000, C236S051000, C700S276000
Reexamination Certificate
active
06591620
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioning equipment operation system for operating air conditioning equipment, and a designing support system for designing and supporting the air conditioning equipment.
An example of conventional air conditioning equipment is described in JP-A-8-8-6533. The air conditioning equipment described in that document is constructed by combining absorption and compression air conditioners. During application of a low load, the absorption air conditioner is first operated. When an air conditioning load exceeds a maximum load of the absorption air conditioner, the absorption and compression air conditioners are both operated.
In addition, JP-A-7-139761 describes a system for operating a cooling tower when an outside air temperature detected by outside air temperature detecting means is lower than an indoor temperature detected by indoor temperature detecting means, in order to efficiently use energy in a clean room by using the cooling tower.
In the case of the air conditioning equipment described in JP-A-8-86533, an absorption freezer is operated with priority, and then a compression freezer is operated according to a load. However, in the air conditioning equipment described therein, the freezer to be operated is only changed to another according to cooling capability. Sufficient consideration is not always given to reductions in costs for operating each freezer by taking a characteristic thereof into consideration.
In the case of the system described in JP-A-7-139761, when the outside air temperature is low, switching is made to the operation of the cooling tower. However, since cooling capability of the cooling tower is greatly dependent on a humidity condition of an outside air, the capability of the cooling tower may not always be used satisfactorily, or cooling by the cooling tower may be impossible.
SUMMARY OF THE INVENTION
The present invention was made to remove the foregoing inconveniences of the conventional art, and it is an object of the invention is to operate air conditioning equipment by reducing running costs.
Another object of the invention is to reduce costs for air conditioning equipment including initial costs. Yet another object of the invention is to provide cold water at low costs. A further object of the invention is to achieve at least one of those objects.
In order to achieve the foregoing object, a feature of the invention is that in an air conditioning equipment operation system where a service provider company operates air conditioning equipment installed in a contract site, the service provider company sets full load or partial load running for a turbo freezer and/or an absorption freezer based on annual air conditioning load fluctuation data and/or weather data, in such a way as to minimize the total running costs of the turbo freezer and/or absorption freezer provided in the air conditioning equipment.
In this case, the total running costs may include costs of a cooling tower for radiating heat generated in a clean room accommodating a production unit of the air conditioning equipment, and heat generated by the production unit. The service provider company may control the air conditioning equipment of the contract site through a public line or Internet, and obtain the weather data from a weather forecast company through the public line or the Internet.
In order to achieve the foregoing object, another feature of the invention is that in an air conditioning equipment operation system where air conditioning equipment provided in a contract site is operated by a service provider company, the service provider company has a control server, which includes a device information database storing a device characteristic data of an air conditioner constituting the air conditioning equipment, a fuel or electricity rate database storing rate data of at least one of gas, oil and electric power, and an air conditioning equipment simulator for obtaining a partial load factor, and at least one selected from consumption of power and consumption of fuel during partial load running by using the device characteristic data and a cycle simulator, and calculating running costs from the obtained consumption of power and/or the obtained consumption of fuel by using the rate data. The contract site includes an air conditioning equipment management controller provided to manage and control the air conditioning equipment. The control server and the air conditioning equipment management controller are connected to each other through a network. The control server predicts a cooling load from predictable time series data on a temperature and humidity of outside air by referring to the device information database, and then makes an operation plan of the air conditioner. The air conditioning equipment management controller operates the air conditioner according to the operation plan.
In this case, the air conditioning equipment simulator calculates running costs for each operation of the air conditioner, and makes operation plan data by an operation method having lowest running costs among the calculated running costs; the air conditioning equipment includes absorption and turbo freezers, and the air conditioning equipment simulator selects full or partial loads of the freezers according to a set amount of cooled heat of the absorption and turbo freezers, and calculates running costs in this case; the air conditioning equipment includes a cooling tower, and the air conditioning equipment simulator calculates running costs according to the operation/stop of the cooling tower; an object to be cooled provided in the air conditioning equipment is cooled by cold water generated by a cold water generator of the service provider company, a temperature sensor for detecting a cooled heat amount of this cold water is provided in the vicinity of the object to be cooled, and the air conditioning equipment simulator obtains an amount of heat for colling from a temperature detected by the temperature sensor, and calculates a use rate of the contract site; the control server predicts a cooling load from prediction data on a temperature and humidity of an outside air purchased from a weather forecast company, and the air conditioning equipment simulator sets an operation method of the air conditioning equipment in the air conditioning equipment management controller through a web based on the predicted cooling load; means may be provided for detecting the temperature and humidity of the outside air, means may be provided for detecting a cooling load of the air conditioning equipment, an equation of relation between the cooling load and the temperature and humidity of the outside air may be obtained from the temperature and humidity of the outside air, and the cooling load detected by the detecting means, and a cooling load may be predicted by using this equation of relation.
In order to achieve the foregoing object, yet another feature of the invention is that an air conditioning equipment designing support system for supporting designing of a number of air conditioners provided in air conditioning equipment comprises: a step (A) of generating an annular cooling load fluctuation pattern of the air conditioning equipment; a step (B) of calculating initial costs by referring to He a device information database storing device characteristics and prices of the number of air conditioners; a step (C) of calculating annual running costs from the annual cooling load fluctuation pattern by referring to the database storing the device characteristics and the prices, and a database storing fuel and electricity rates; a step (D) of calculating costs including device taxes and interest rates; and a step (E) of calculating total costs including the initial costs, and running costs of a set number of years. By changing the configuration of the air conditioners of the air conditioning equipment, and repeating the steps (B) to (E), each air conditioner of the air conditioning equipment is set in such a way as to minimize the total costs.
In this
Kikuchi Hiroshige
Nakajima Tadakatsu
Sasao Keiji
Antonelli Terry Stout & Kraus LLP
Doerrler William C.
Hitachi , Ltd.
LandOfFree
Air conditioning equipment operation system and air... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air conditioning equipment operation system and air..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air conditioning equipment operation system and air... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3040936