Air conditioner

Refrigeration – Automatic control – Trapping and discharging refrigerant batches

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S159000, C062S160000, C165S042000, C165S043000

Reexamination Certificate

active

06748753

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an air conditioner having a hot gas bypass function of heating air when a gas refrigerant of high temperature and pressure, which has been discharged from a refrigerant compressor, is decompressed and introduced into a refrigerant evaporator and the refrigerant evaporator is used as a radiator from which the heat of the gas refrigerant is radiated. More particularly, the present invention relates to an air conditioner for vehicle use which is preferably mounted on a vehicle.
2. Description of the Related Art
In a conventional air conditioner for vehicle use, warm water (engine coolant) is circulated in a heat exchanger used for heating in winter, and air to be conditioned is heated by this heat exchanger for heating while the warm water is used as a heat source. In this case, when the temperature of the warm water is low, air at low temperature is blown out into a passenger compartment, that is, it is impossible to provide a sufficiently large heating capacity.
In order to solve the above problems, conventionally, an air conditioner is proposed in which the heating capacity is exhibited by providing a hot gas bypass. In this conventional air conditioner, when the temperature of warm water is low in the case of starting an engine, gas refrigerant (hot gas) compressed by a compressor in the refrigerating cycle is introduced into an evaporator which bypasses a condenser, and heat is emitted from the gas refrigerant to air to be conditioned by the evaporator, so that a heating function can be exhibited. However, the hot gas cycle in which gas refrigerant of high temperature and pressure in the refrigerating cycle is used, the heating capacity is greatly affected by whether or not a sufficiently large quantity of refrigerant is charged into the air conditioner. For example, when a sufficiently large quantity of refrigerant is not charged, the heating capacity is lowered, and when an excessively large quantity of refrigerant is charged, the compressor is too frequently turned on and off, and the durability of the magnet switch of the compressor is deteriorated.
In order to solve the above problems, Japanese Unexamined Patent Publication No. 5-272817 discloses the following techniques. A high pressure on the discharging side of the compressor is detected, and it is judged whether a quantity of circulating refrigerant is sufficient or insufficient in the heating mode conducted by the hot gas bypass. In the case where the quantity of refrigerant is too large, the refrigerant is discharged onto the condenser side. In the case where the quantity of refrigerant is too small, the residing refrigerant is recovered from the condenser side. Recovery of the residing refrigerant is specifically conducted in such a manner that the entry side of the condenser is opened and the entry side of the hot gas bypass path is closed, that is, the air conditioner is set in the normal cooling mode, and then the compressor is operated.
However, in the heating mode conducted by the hot gas bypass, high pressure on the discharging side of the compressor fluctuates by factors such as a heat load in the cycle, rotary speed of the compressor, throttle diameter of the decompression means in the hot gas bypass path and so forth. Therefore, it is difficult to appropriately judge only by the high pressure whether the quantity of refrigerant is sufficient or insufficient.
In addition to that, after the hot gas bypass operation has been started, in order to stabilize the operation of high pressure, it takes a long time. At least 5 minutes is required to stabilize the operation at high pressure. In this period of time, the heating capacity is insufficient due to lack of the refrigerant. Further, a sufficiently large quantity of oil is not returned to the compressor, which causes a failure of lubrication of the compressor.
When the residing refrigerant is recovered in the case of heating in winter, the outside temperature is low and a heat load for cooling is very light. Therefore, a difference between high and low pressure in the refrigerating cycle is very small. For the above reasons, in the case where a variable displacement type compressor, in which a displacement of the compressor is changed by utilizing a difference between high and low pressure in the refrigerating cycle, is used for the compressor, the displacement is not increased, that is, the displacement is kept small because the difference between high and low pressure in the refrigerating cycle is small. Accordingly, it becomes impossible to recover the residing refrigerant.
In order to solve the above problems, the present applicant has proposed the refrigerating cycle disclosed in U.S. Pat. No. 6,105,375. In this conventional refrigerating cycle device, when the heating mode conducted by the hot gas bypass is started, when the compressor is operated while both the entry side of the condenser and that of the hot gas bypass path are closed, the residing refrigerant existing on the condenser side is forcibly recovered onto the evaporator side.
However, in the case where recovery control of recovering the residing refrigerant is conducted as described above, as the compressor is continuously driven under the condition that only a small quantity of refrigerant and oil exist in the hot gas cycle, it becomes impossible to supply a necessary quantity of oil to the compressor for a long period of time. In this case, failure of lubrication is caused in the compressor, which leads to abrasion or breakdown of parts of the compressor. In the worst case, the compressor is locked.
Conventionally, in the case where hot gas bypass operation is conducted for more than a predetermined period of time, there is a possibility that refrigerant leaks from the electromagnetic valve to the condenser side. In this case, the quantities of refrigerant and oil in the hot gas cycle are decreased, and the hot gas capacity is lowered and, further, abrasion of the compressor is caused due to a reduction in the quantity of oil circulated.
SUMMARY OF THE INVENTION
The present invention has been accomplished to solve the above problems. It is an object of the present invention to provide an air conditioner capable of effectively recovering refrigerant and oil, which reside in a condenser, immediately before the start of hot gas operation, by driving a compressor for a short period of time.
It is another object of the present invention to provide an air conditioner capable of preventing a reduction of the hot gas capacity and also preventing abrasion of a compressor caused by a decrease in quantities of refrigerant and oil in the hot gas cycle in the case where hot gas bypass operation is conducted for more than a predetermined period of time.
In the air conditioner of an aspect of the present invention, it is possible to conduct a normal cooling mode operation and a heating mode operation performed by a hot gas bypass in which a condenser is bypassed. Immediately before this heating mode operation, after cooling mode operation has been turned on for a predetermined period of time, it is turned off for a predetermined period of time, and then heating mode operation is started. Due to the foregoing, refrigerant residing in the condenser can be effectively recovered into the hot gas cycle in a short period of time. Therefore, it becomes possible to prevent the occurrence of abrasion or breakdown of parts of the compressor caused by lack of lubrication in the compressor.
In the air conditioner of another aspect of the present invention, a second decompression device for decompressing refrigerant discharged from a compressor is arranged in a hot gas bypass path, and the hot gas bypass path is connected with a portion between a first decompression device and an evaporator. Concerning the system constitution of the hot gas cycle, there are provided two types. One is a type in which one decompression device is used for both the cooling mode and the heating mode (type B). The other is a type in which two differen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Air conditioner does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Air conditioner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air conditioner will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3353567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.