Air bag system

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S739000

Reexamination Certificate

active

06554313

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an air bag system for protecting occupants from impact during a car accident.
2. Description of the Related Art
Recently, in order to secure occupants' safety in such vehicular collisions as car accidents, more vehicles tend to be equipped with air bag systems in which, when collision occurs, an air bag inflates and deploys within the vehicle to restrain an occupant. In air bag systems, upon collision of automobiles or the like, a sensor is switched by the impact of the collision to actuate an inflator which ejects a high-pressure gas at a high temperature. The gas instantaneously inflates an air bag to protect the occupant's face, front of the head and chest.
In the above conventional air bag systems, the air bag is deployed by a sharp pressure rise by the inflator and rapidly inflates and deploys upward/downward and in the right and left directions as well as toward the occupant. Thus, the air bag itself needs strength to such an extent that the air bag is resistant to the sudden increase in the inner pressure caused by the high-pressure gas and the impact against the occupants. Therefore, the air bag is made of a tough material.
However, the above structure of the air bag system has caused secondary injuries to occupants. Specifically, such secondary injuries were attributed to an impact to the head, face and upper body of the occupants against the surfaces of the air bags made of tough materials which rapidly inflate and deploy by the high-pressure gas. This has caused various injuries to occupants such as facial burns, nasal bone fractures, corneal damage, which particularly occurs in senior occupants who have deteriorated reflexes in sudden accidents, cervical vertebral damage and fractures, which often occur in infants who sit in inappropriate postures.
Particularly in Western countries, air bag systems are designed so that the air bags themselves can sufficiently absorb shock by a collision without the use of seat belts as well. Therefore, both pressure and amount of the gas fed into the air bags are set much higher than those in the case where air bags are used as auxiliary restraining devices to seat belts. Accordingly, secondary injuries to the occupants are considerably worse, sometimes causing death, which leads to social problems.
Coping with the above problems of conventional air bag systems, the air bags with less shock upon inflation and deployment are disclosed in Unexamined Japanese Patent Publications Nos. H2-310143 and H3-281460 as well as in U.S. Pat. No. 5,927,748.
The air bag system disclosed in Unexamined Japanese Patent Publication No. H2-310143 is provided with a low-pressure inflator and a high-pressure inflator as the inflators for inflating and deploying the air bag. By a delaying means, when a vehicle collides, the low-pressure inflator is first ignited and actuated, followed by the ignition and actuation of the high-pressure inflator. Thus, in the initial period of restraining an occupant, the inflation and deployment of the air bag under the low pressure lessens the sudden shock or impact to the occupant. Next, the ignition and actuation of the high-pressure inflator raise the inner pressure of the air bag to securely restrain and adequately protect the occupant. In this air bag system, however, the different kinds of inflators, that is, the low-pressure and high-pressure inflators provided in the system complicate the system and also increase costs.
The air bag system disclosed in Unexamined Japanese Publication No. H3-281460 has a double-layered structure comprising an inner bag of smaller capacity and an outer bag of larger capacity, the inner bag being housed within the outer bag, wherein a plurality of gas ports each having an opening of a particularly large dimension are provided only on an outer periphery of the inner bag. In this structure, an inflator actuated at the time of collision introduces a high-pressure gas into the inner bag to inflate and deploy the inner bag at an initial stage, and then the gas is fed through the gas ports provided on the outer periphery of the inner bag into the outer bag to fully inflate and deploy the outer bag upward/downward and in the right and left directions.
The air bag system disclosed in U.S. Pat. No. 5,927,748, similar to the air bag system of Unexamined Japanese Publication No. H3-281460, has also a double-layered structure comprising a primary inflatable bag and a secondary inflatable bag, the primary bag being housed within the secondary bag.
In the above-described double-layered air bag systems, merely the timing when the outer or secondary bag starts to inflate and deploy is delayed by introducing a gas through the inner or primary bag. The pressure caused by the high-pressure gas upon inflation and deployment of the air bag is thus imposed equally in all directions of the outer or secondary bag, wherein relieving the shock or impact toward the face and head of an occupant who touches the outer or secondary bag is not given particular consideration.
Additionally, in the air bag systems disclosed in Unexamined Japanese Publication No. H3-281460 and U.S. Pat. No. 5,927,748, the high-pressure gas which has inflated and deployed the inner or primary air bag is exhausted outside only through the outer or secondary bag. An occupant who collided with the outer or secondary bag may crush the bag to block gas passages between the inner/primary bag and the outer/secondary bag. In this case, the high-pressure gas cannot be easily discharged from the inner or primary bag, thereby making it impossible to relieve the shock or impact to an occupant by reducing the pressure of the inner or primary bag.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a safer air bag system, which lessens the shock or impact to the head and face of an occupant when an air bag inflates and deploys.
An air bag system according to the present invention comprises a primary air bag and a secondary air bag wherein the secondary air bag is provided on the side facing an occupant of the primary bag. The primary air bag inflates and deploys by a high-pressure gas, and the secondary air bag inflates and deploys by the high-pressure gas introduced through the primary air bag. By this structure, the secondary air bag inflates and deploys more slowly than the primary air bag. The primary air bag absorbs most of the primary impact to an occupant in a vehicular collision such as car accidents while the secondary air bag mainly absorbs the shock or impact to the face caused by inflation and deployment of the primary air bag.
The primary air bag and the secondary air bag can be formed separately wherein the primary air bag and the secondary air bag are connected by a connecting means such as a tube. However, it is preferable that the secondary air bag is formed to adhere to the primary air bag, and at least one gas introducing port which introduces a high-pressure gas into the secondary air bag is provided on the primary air bag on the side facing an occupant. Thus, since the high-pressure gas introduced into the secondary air bag is limited by the gas introducing port, the flow rate of the high-pressure gas introduced into the secondary air bag is less. Consequently, the secondary air bag inflates and deploys more slowly than the primary air bag.
The gas introducing port may have any form; however, it is preferable to provide 10 to 30 round-shaped gas introducing ports having a diameter of 3 mm to 10 mm. When the high-pressure gas passes through the ports, the round shape makes the pressure imposed on the gas introducing port uniform. It may also be preferable to provide 2 to 10 gas introducing ports which have larger diameters than the above. In any case, in order that the secondary air bag inflates and deploys more slowly than the primary air bag, the gas introducing port is provided so as to reduce the flow rate of the high-pressure gas introduced into the secondary air bag, thereby relieving shock to the face when

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Air bag system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Air bag system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air bag system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3063023

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.