Ships – Building – Antifriction surfaces
Reexamination Certificate
2001-05-25
2003-04-15
Basinger, Sherman (Department: 3617)
Ships
Building
Antifriction surfaces
C114S272000, C114S273000, C114S290000
Reexamination Certificate
active
06546886
ABSTRACT:
BACKGROUND AND FIELD OF THE INVENTION
The instant invention describes an improved marine vehicle or ship that has substantial efficiency advantages compared to other marine vehicles. In its preferred embodiment, it offers the high efficiencies of marine vehicles that are partially supported by blower fan supplied pressurized gas cushion(s) that are disposed between the marine vehicle and the water surface. Examples of gas cushioned craft are the hovercraft or Surface Effect Ship (SES). Examples of such a gas-cushioned craft are given in applicant's U.S. Pat. Nos. 5,611,294 and 5,626,669.
The improved marine vehicle also has means to create a great enhancement of its aerodynamic lift by increasing lift over a preferably at least partially airfoil shaped upper surface of the improved marine vehicle. This is enhanced by drawing air into a portion of said upper surface to in effect create a boundary layer control system. It is offered that the preferred source of power for the boundary layer control system is air used to supply the inlet air to the blower supplying gas to the gas cushion(s). Optional sources of power for the boundary layer control system include air directed to the propulsion system engine(s) and/or air to the propulsor itself. It is also possible to use a flow deflector to direct and accelerate airflow over the upper surface of the vehicle.
There are vehicles that have a wing that operates close to the water or ground surface thereby increasing their lifting efficiency at cruise speeds by compressing the air under the wing to create a water or ground effect. These are sometimes called Wingships. Some of applicant's patents that describe versions of Wingships are U.S. Pat. Nos. 5,611,294 and 5,626,669. The Wingship can actually transition from a waterborne to an airborne mode of operation. Wingships normally have relatively thin wings like aircraft for low drag coefficients when airborne. Ideally speaking however, a wing with the highest coefficient of lift would have a large radius leading edge and a very thick shape. It would also have a high camber in its most desired embodiment. Its shape requires that the air passing over the upper surface of the wing travel significantly further and hence faster than the air traveling over the upper surface of a thinner wing as used on aircraft. By Bernoulli's equations this results in a lower static head or pressure on the top of the instant invention's thick section wing and hence a much higher coefficient of lift compared to a thin section aircraft style wing. However, in the process of doing this there is, as speed increases, a separation of airflow from the top of the thick section wing. The main body of the instant invention uses a thick section wing but applies means to overcome the flow separation problem. It does this by means of: 1) Boundary layer bleeds, 2) Flow augmentation means, and/or 3) Flow directing vanes. As a result, it offers coefficients of lift that are about twice that of state of the art thin section wings used on aircraft. The instant invention's thick section wings still realize the significant benefits of ground effect lift on their undersides as they operate close to the water surface. There have been studies of thick section wings that use boundary layer bleeds or flow augmenting means with published results showing better than a two times lift coefficient improvement compared to thin section wings. A discussion of the performance of such a thick section wing is given on pages 232 and 233 of “Theory of Wing Sections” by Ira H. Abbott and Albert E. Van Doenhoff as published by Dover Publications, Inc., New York, N.Y., copyright 1959, Library of Congress No: 60-1601. There appears to have been no practical application to today's higher speed aircraft since the frontal profile area of the thick section wings created excessive drag at high speeds plus, importantly, it was deemed too expensive and weighty to incorporate and drive the necessary blower fans to either bleed off and redirect the boundary layer or supplement it with large volumes of gas flow. Applicant addresses these problems by: 1) Operating at relatively low marine vehicle speeds and 2) Utilizing the tremendous volumes of air flow required by the large blower fans that supply the pressurized gas cushions of the SES or hovercraft and/or the air required by gas turbines used for propulsion power and/or air directed to the inlets of propulsors to bleed off gas flowing over the upper surfaces of a thick section wing.
The instant invention offers further means to improve performance that offer much advantage. A few of these improvements include: 1) A transversely oriented curvilinear upper surface shape to the gas cushion recess(es) in the hull(s) that acts to add considerable structural strength to the hull as well as to reduce displacement when the blowers are off, 2) A novel aft seal for the recess that reduces leakage from the gas cushion, 3) Water friction reducing steps set into the sides of the hull(s) that are unique in that they are inset behind a chine which improves performance when the marine vehicle is getting onto plane as well as when operating at speed in rough seas, 4) Optional, preferably retractable, sidewings that, while lightweight in construction, offer considerable aerodynamic efficiency advantages, and 5) The ability to transition to wing in ground effect flight at least mostly free of the water when an air propulsor rather than a water propulsor is installed.
There are further improvements over the previous art that will become apparent upon examination of the remainder of this application.
SUMMARY OF THE INVENTION
The primary object of the instant invention is to provide a superior high efficiency marine vehicle that includes a boat hull where said boat hull has means to restrain an artificially pressurized gas cushion between the boat hull and a water surface.
It is a directly related object of the invention that a means to artificially pressurize the gas cushion can take the form of a powered blower fan, engine exhaust, or other gas pressurizing means.
It is another object of the invention that said artificially pressurized gas cushion is at least in part restrained by a recess built into an underside of the boat hull.
It is an object of the invention that one or more of its multiple hulls can include the air cushion recess(es) that are pressurized with gas and that one or more of its multiple hulls do not have the gas cushion recess(es).
It is a related object of the invention that said gas cushion recess, in its optimum configuration, converges going forward over at least a portion of its length.
It is another related object of the invention that the gas cushion recess is bordered, at least partially, by recess sidekeels where at least one of said sidekeels converges toward the other over at least a portion of its length going from aft to forward.
It is a directly related object of the invention that a distance from where said sidekeels begin converging going forward to a forward portion of the boat hull that is in water contact, as seem in a calm sea surface waterline when the recess(es) are not pressurized with gas, extends over at least twenty-five percent of a waterline length of said boat hull.
It a further directly related object of the invention that from where said sidekeels begin converging going forward to a forward portion of the boat hull that is in water contact there is formed an included angle of less than twenty-six degrees.
It is yet another object of the invention that gas cushion recess(es) can have curvilinear upper surfaces as seen in a transverse plane of the hull to greatly add strength to the hull and to reduce draft when the gas cushion is not pressurized.
It is a further object of the invention that a transversely oriented gas cushion recess seal can include a step seal.
It is a directly related object of the invention that the step seal can be vented or pressurized to thereby aid in its sealing effectiveness.
It is still another object of the invention t
Basinger Sherman
Burg Paulette Renee
Van Der Wall Robert J.
LandOfFree
Air assisted ship does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Air assisted ship, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Air assisted ship will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3065499