Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Antihalation or filter layer containing
Reexamination Certificate
2000-12-07
2001-09-18
Le, Hoa Van (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Radiation sensitive product
Antihalation or filter layer containing
C430S522000
Reexamination Certificate
active
06291149
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a dispersion of an aggregated dye, a method for preparing said dispersion and a radiation-sensitive element containing said aggregated dye.
BACKGROUND OF THE INVENTION
Radiation-sensitive materials, including light-sensitive materials, such as photographic materials, may utilize filter dyes for a variety of purposes. Filter dyes may be used to adjust the speed of a radiation-sensitive layer; they may be used as absorber dyes to increase image sharpness of a radiation-sensitive layer; they may be used as antihalation dyes to reduce halation; they may be used to reduce the amount or intensity of radiation from reaching one or more radiation-sensitive layers, and they may also be used to prevent radiation of a specific wavelength or range of wavelengths from reaching one or more of the radiation-sensitive layers in a radiation-sensitive element. For each of these uses, the filter dye(s) may be located in any number of layers of a radiation-sensitive element, depending on the specific requirements of the element and the dye, and on the manner in which the element is to be exposed. The amount of filter dyes used varies widely, but they are preferably present in amounts sufficient to alter in some way the response of the element to radiation. Filter dyes may be located in a layer above a radiation-sensitive layer, in a radiation-sensitive layer, in a layer below a radiation-sensitive layer, or in a layer on the opposite side of the support from a radiation-sensitive layer.
Photographic materials often contain layers sensitized to different regions of the spectrum, such as red, blue, green, ultraviolet, infrared, X-ray, to name a few. A typical color photographic element contains a layer sensitized to each of the three primary regions of the visible spectrum, i.e., blue, green, and red. Silver halide used in these materials has an intrinsic sensitivity to blue light. Increased sensitivity to blue light, along with sensitivity to green light or red light, is imparted through the use of various sensitizing dyes adsorbed to the silver halide grains. Sensitized silver halide retains its intrinsic sensitivity to blue light.
There are numerous applications for which filtration or absorbance of very specific regions of light are highly desirable. Some of these applications, such as yellow filter dyes and magenta trimmer dyes, require non-diffusing dyes which may be coated in a layer specific manner to prevent specific wavelengths of light from reaching specific layers of the film during exposure. These dyes must have sharp-cutting bathochromic absorbance features on the bathochromic side to prevent light punch through without adversely affecting the speed of the underlying emulsions. Depending on the location of these filter layers relative to the sensitized silver halide emulsion layers, it would also be desirable to have non-diffusing, layer specific filter dyes with absorption spectra which are sharp-cutting on the hypsochromic edge as well as the bathochromic edge. Such dyes are sometimes known as “finger filters”. Preferably these dyes should exhibit high extinction coefficients, narrow halfbandwidths and sharp cutting hypsochromic and bathochromic absorption envelopes when incorporated into photographic elements. Typically, to achieve these properties, solutions of dissolved, monomeric dyes (non-aggregated) have been incorporated. Dyes introduced by this method cannot be coated in a layer specific manner without the use of mordants, and therefore they often wander into adjacent layers and can cause problems such as speed loss or stain. Solubilized monomeric dyes may be mordanted to prevent wandering through adjacent layers. While the use of polymeric mordants can prevent dye wandering, such mordants aggravate the stain problem encountered when the dye remains in the element through processing.
Dyes with a high extinction coefficient allow maximum light absorption using a minimum amount of dye. Lower requisite dye laydown reduces the cost of light filtration and produces fewer processing by-products. Lower dye laydowns may also result in reduced dye stain in short duration processes.
Finger filters such as described above are highly desirable for other uses such as protecting silver halide sensitized emulsions from exposure by safelights. Such dyes must have absorbance spectra with high extinction coefficients and narrow halfbandwidths, and sharp cutting absorbance envelopes to efficiently absorb light in the narrow safelight-emitting region without adversely affecting the speed of the sensitized silver halide emulsions. This affords protection for the sensitized emulsion from exposure by light in the safelight's spectral region. Useful absorbance maxima for safelight dyes include, but are not restricted to 490 nm and 590 nm.
Similar properties are required for infrared absorbing filter dyes. Laser-exposed radiation-sensitive elements require high efficiency light absorbance at the wavelength of laser emission. Unwanted absorbance from broadly absorbing dyes reduces the efficiency of light capture at the laser emission wavelength, and requires the use of larger amounts of dye to adequately cover the desired spectral region. In photographic elements, unwanted absorbance may also cause speed losses in adjacent silver halide sensitized layers if the photographic element has multiple sensitized layers present. Useful finger filter absorbance maxima for absorbing laser and phosphor emissions include but are not restricted to 790 nm, 633 nm, 670 nm, 545 nm and 488 nm. [Laser ablation
on-photographic]
In some photographic elements it is necessary to provide light filtration or antihalation at deep cyan and infrared wavelengths. Typically such protection has been achieved using water soluble dyes or milled solid particle dyes. Typically, water soluble monomeric dyes can provide relatively sharp, high extinction absorbance, but are prone to interlayer wandering. Solid particle dispersions of typical cyan filter dyes are broad absorbing, see for example U.S. Pat. No. 4,770,984, and often weakly absorbing at 700 nm.
One common use for filter dyes is in silver halide light sensitive photographic elements. If, prior to processing, blue light reaches a layer containing silver halide which has been sensitized to a region of the spectrum other than blue, the silver halide grains exposed to the blue light, by virtue of their intrinsic sensitivity to blue light, would be rendered developable. This would result in a false rendition of the image information being recorded in the photographic element. It is therefore a common practice to include in the photographic element a material that filters blue light. This blue-absorbing material can be located anywhere in the element where it is desirable to filter blue light. In a color photographic element that has layers sensitized to each of the primary colors, it is common to have the blue-sensitized layer closest to the exposure source and to interpose a blue-absorbing, or yellow filter layer between the blue-sensitized layer and the green- and red-sensitized layers.
Another common use for filter dyes is to filter or trim portions of the UV, visible or infrared spectral regions to prevent unwanted wavelengths of light from reaching sensitized emulsions. Just as yellow filter dyes prevent false color rendition from the exposure of emulsions sensitized to a region of the spectrum other than blue, UV, magenta, cyan and infrared filter dyes can prevent false color rendition by shielding sensitized emulsion layers from exposure to specific wavelength regions. One application of this strategy is the use of green-absorbing magenta trimmer dyes. In one type of typical color photographic element containing a layer sensitized to each of the three primary regions of the visible spectrum, i.e., blue, green, and red, the green-sensitized layer is coated above the red-sensitized layer and below the blue-sensitized layer. Depending on the chosen spectral sensitivity maxima for the sensitized silver halide lay
Barber Gary Norman
Brick Mary Christine
Gallo Elizabeth Ann
Harrison William James
Helber Margaret Jones
Eastman Kodak Company
Le Hoa Van
Rice Edith A.
LandOfFree
Aggregated dyes for radiation-sensitive elements does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aggregated dyes for radiation-sensitive elements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aggregated dyes for radiation-sensitive elements will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2466686