Agglutination reaction and separation vessel

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S051000, C422S051000, C422S068100, C422S073000, C422S105000, C435S007250, C435S287200, C435S288100, C435S810000, C435S165000, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C435S805000, C435S809000, C435S824000

Reexamination Certificate

active

06187583

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the field of agglutination assays, and particularly to vessels useful for conducting agglutination assays and separating agglutinates.
Blood group serology requires the determination of blood cell compatibility between a blood donor and patient recipient before a transfusion or organ transplant involving the patient. Blood cell compatibility is determined by the absence of immunological reaction between antibodies contained in the blood serum of a patient and antigens present on blood cells from the donor.
Many different blood group antigens are found on the surface of red blood cells of every individual. Blood grouping is generally the process of testing red cells to determine which antigens are present and which are absent. This is generally accomplished by using antibodies of known specificity.
For detecting antibodies in the serum or plasma of a patient, reagents containing blood cells having known antigens are mixed with a serum sample. The reactants are incubated for a period of time sufficient to permit agglutination of the red blood cells, which occurs when antibodies against those antigens are present. The mixture is then centrifuged, and if agglutinated blood cells are present, such agglutinates are clearly visible at the bottom of the reaction vessel, thus indicating the presence of antibodies in the sample directed against the known antigens on the red blood cells. If no antibodies are present in the sample directed against the known antigens on the red blood cells, agglutination does not occur, and this is indicated by the absence of agglutinated red cells after centrifugation.
Recently, systems have been developed in which the agglutination reaction is carried out in one portion of a vessel, and separation of agglutinated red cells is accomplished in another portion of the same vessel using a matrix which separates agglutinated cells from other components in the reagent/sample mixture. One such system is disclosed and described in co-pending U.S. patent application Nos. 08/407,747, and 08/112,402, which are continuations of U.S. Ser. No. 08/023,500, now abandoned, which applications are commonly owned by the owner of the subject application. The contents of each of these applications are hereby incorporated by reference herein. Agglutination reaction and separation vessels according to the present invention, and which are also useful in the inventions disclosed in the aforementioned applications, are manufactured and sold by Ortho Diagnostic Systems Inc., Raritan, N.J., under the trademark BIOVUE™. Such reaction vessels are in the form of a column having an upper chamber and a lower chamber wherein the upper chamber is of a wider diameter than the lower chamber. The lower chamber contains a matrix for separating agglutinated cells from non-agglutinated cells. The diameter of the lower chamber is narrow enough such that when reagents and samples are added to the upper chamber, typically using a pipette, the reagents and samples remain in the upper chamber, and do not enter into the lower chamber, unless an additional force is applied.
An indirect antiglobulin test, known as the Coombs test, is a blood test used to determine whether there are IgG antibodies in a patient's serum to specified antigens on the surface of red blood cells. In the Coombs test, serum is incubated in the presence of reagent red cells to allow the antibodies to bind to antigens on the surface of the red cells. These IgG antibodies most often do not, by themselves, agglutinate the red cells, or only agglutinate them insufficiently to be detected visually by conventional techniques. Addition of a second antibody directed to human IgG is usually necessary to facilitate visible agglutination.
In red cell typing, a blood test used to determine whether certain antigens are present on the surface of red blood cells, the red cells being analyzed are added to the upper chamber followed by application of force such as, for example, centrifugal force which moves them into the lower chamber containing antibodies to particular red cell antigens and the separation matrix. If the red cells have the antigen(s) on their surface to combine with the specific antibodies in the lower chamber, agglutinates will form and be separated by the matrix.
In other types of blood assays, such as reverse typing where directly agglutinating antibodies for red cell antigens in a patient's serum are being assayed, a patient's serum and reagent red blood cells with known antigens on their surface are added to the upper chamber and force, such as, for example, centrifugal force is applied to move the reactants into a lower chamber which contains a liquid medium and separation matrix but no antibody. In this assay the presence of directly agglutinating antibody in the patient's serum would produce agglutinates which would be separated by the matrix.
In another type of blood assay, reagent antibody with a known specificity for a red cell antigen would be deposited into the upper chamber, together with patient's red cells. If the reagent antibody is a directly agglutinating antibody, force, such as for example, centrifugal force would be applied without prior incubation and the contents would be forced into the lower chamber containing separation matrix in aqueous solution. Agglutinates would then be separated by the matrix. Alternatively, patient's red cells are deposited into the upper chamber and IgG reagent antibody with known specificity is added, followed by incubation to allow the antibody to attach to presumptive antigens on the surface of the red cells. After incubation, force, such as for example, centrifugal force is applied to move the reactants into the lower chamber which contains separation matrix and anti-IgG antibodies specific for the IgG reagent antibody used to incubate red cells in the upper chamber. If the reagent antibody is present on the surface of the patient's cells, the anti-IgG antibody in the lower chamber would facilitate the formation of agglutinates which would be separated by the matrix.
After the sample and reagents have been allowed to incubate for a sufficient period of time to permit either direct agglutination, as in the case of a red cell typing test, an antibody-antigen reaction, as in the case of a Coombs test, the reaction vessel is subjected to pressure, for example, via centrifugation such that the reactants are expelled into the lower portion of the column and onto the separation matrix. As a result of the centrifugation, unagglutinated materials migrate down through the separation matrix while agglutinated cells remain on top of the separation matrix or distributed within the matrix depending on the degree of agglutination. Stronger agglutination reactions result in the cells remaining towards the upper portion of the separation matrix while weaker agglutination reactions result in distribution of agglutinates at various distances from the top of the matrix.
Retention of the sample and reagents in the upper portion of the column during the incubation phase is the result of surface tension across the top margin of the lower portion of the column where the diameter is reduced relative to the upper portion. Two potential sources of error in conducting an assay using this column have been identified. First, if reagents and sample are pipetted directly down the center of the reaction chamber with excessive force, the reactants may be deposited directly to the top of the separation matrix in the lower chamber and not retained in the upper chamber during the incubation phase. Thus, the reactants will begin to enter the separation matrix prior to the completion of agglutination. Second, there is potential that the diluent or solution which contains the separation matrix may enter the upper chamber. This can occur through splashing or other disturbance, for example, during shipping and handling of the vessels. In some cases where the solution or diluent containing the separation matrix also contains antib

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Agglutination reaction and separation vessel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Agglutination reaction and separation vessel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Agglutination reaction and separation vessel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560024

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.