Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor
Reexamination Certificate
2007-08-28
2007-08-28
Kaushal, Sumesh (Department: 1633)
Chemistry: molecular biology and microbiology
Micro-organism, per se ; compositions thereof; proces of...
Bacteria or actinomycetales; media therefor
C435S144000, C435S145000, C435S252100, C435S252300, C435S440000, C435S471000, C435S488000
Reexamination Certificate
active
11200385
ABSTRACT:
Methods of increasing yields of succinate using aerobic culture methods and a multi-mutantE. colistrain are provided. Also provided is a mutant strain ofE. colithat produces high amounts of succinic acid.
REFERENCES:
patent: 6743610 (2004-06-01), Donnelly et al.
Hong et al., 2001, Biotechhnol. Bioeng 74:89-95.
Mijts et al (2003, current opinion in Biotechnology 14:597-602.
Kubo et al., 2000, J. Biosc. Bioeng. 6:619-624.
sunnarborg et al., 1990, J. Bacteriol. 172:2642-2649
Abdel-hamid et al., 2001, microbial. 147:1483-1498.
Yang et al., 2001, Metabolic engineering. 3:115-123.
Helling et al., 1971, J. Bact. 105;1224-1226.
Vemuri et al., 2002, J. Ind. Microbiol. Biotechnol 28:325-332.
Yang et al., 2001, Biotechnol. Bioeng 65:291-297.
Tseng et al., 2001, J. Bacteriol 183:461-467.
Bramer et al., 2002, FEMS Microbiology Letters 212: 159-164.
Cecchini, et al., (Bray, et al., eds) pp. 555-558, Walter de Gruyter, New York (1984).
Wang, et al. App. Biochem. Biotechnol. 70-72:919-28 (1998).
Zhang, et al. Sheng Wu Gong Cheng Xue Bao. 17:59-63 (2001).
U.S. Appl. No. 10/923,635, Aug. 20, 2004, San et al.
U.S. Appl. No. 10/987,511, Nov. 12, 2004, San et al.
U.S. Appl. No. 11/214,309, Aug. 29, 2005, San et al.
Amann, et al., Gene 69:301-15 (1988).
Berrios-Rivera SJ, Bennett GN, San KY. Metabolic engineering ofEscherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab. Eng. Jul. 2002;4(3):217-29.
Carole, et al. Appl Biochem Biotechnol. 113-116:871-85 (2004).
Chan and Sim, Microbiology 144:3229-37 (1998).
Chang, et al. Appl Environ Microbiol. 65:1384-9 (1999).
Chatterjee, et al. Appl Environ Microbiol. 67:148-54 (2001).
Chou, C., et al.; Effect of Modulated Glucose Uptake on High-Level Recombinant Protein Production in a DenseE. coliCulture; Biotechnol. Prog., vol. 10, pp. 644-647, 1994.
Datsenko and Wanner. Proc Natl Acad Sci U S A. 97:6640-5 (2000).
Dittrich, C. R.; Vadali, R. V.; Bennett, G. N. San, K.-Y. Redistribution of metabolic fluxes in the central aerobic metabolic pathway ofE.colimutant strains with deletion of the ackA-pta and poxB pathways for the production of isoamyl acetate. 2004.
Fiegler, et al., J. Bact. 181:4929-36 (1999).
Gokarn, et al., App. Micobiol. Biotechnol. 56:188-95 (2001).
Gokarn, R. R.; Eiteman, M. A.; Altman, E. Expression of pyruvate carboxylase enhances succinate production inEscherichia coliwithout affecting glucose uptake rate. Biotech. let. 1998, 20, 795-798.
Gokarn, R. R.; Eiteman, M. A.; Altman, E. Metabolic analysis ofEscherichia coliin the presence and absense of carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase. App Environ Microbiol. 2000, 666, 1844-1850.
Goldberg, et al., App. Environ. Microbiol. 45:1838-47 (1983).
Hahm, D. H.; Pan, J. G.; Rhee, J. S. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant ofEscherichia coliHZB101 as a production host of foreign lipase. Appl Microbiol Biotechnol. 1994, 42, 100-107.
Hasona, et al. J Bact. 186:7593-600 (2004).
Holms, W. H. The central metabolic pathways inEscherichia coli: relationship between flux and control at a branchpoint, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul. 1986, 28, 69-105.
Kelly, et al., Microbiology 148:793-8 (2002).
Kern, et al., FEMS Yeast Research. 5:43-9 (2004).
Kim, et al. Appl Environ Microbiol. 70:1238-41 (2004).
Kornberg, H. L. The role and control of the glyoxylate cycle inEscherichia coli. Biochem. J. 1966, 99, 1-11.
Lin H, Bennett GN, San KY. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineeredEscherichia coli. J Ind Microbiol Biotechnol. Mar. 16, 2005; 32: 87-93.
Lin H, Bennett GN, San KY. Genetic reconstruction of the aerobic central metabolism inEscherichia colifor the absolute aerobic production of succinate. Biotechnol Bioeng. Jan. 20, 2005;89(2):148-56.
Lin H, San KY, Bennett GN. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains ofEscherichia coli.Appl Microbiol Biotechnol. Nov. 24, 2004; pp. 1-16.
Lin H, Vadali RV, Bennett GN, San KY. Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production inEscherichia coli. Biotechnol Prog. Sep.-Oct. 2004;20(5):1599-604.
Lin H. et al. Metabolic engineering of aerobic succinate production systems inEscherichia colito improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng. Mar. 2005;7(2):116-27.
Lin, et al. Biotechnol. Bioeng. 90:775-9 (2005).
Luli, G. W.; Strohl, W. R. Comparison of growth, acetate production, and acetate inhibition ofEscherichia colistrains in batch and fed-batch fermentations. Applied and Environmental Microbiology. 1990, 56, 1004-1011.
Maklashina, et al. J Bact. 180:5989-96 (1998).
Millard, et al.,. App. Environ. Microbiol. 62:1808-10 (1996).
Phillips, G. J.; Park, S. K.; Huber, D. High copy number plasmids compatible with commonly used cloning vectors. Biotechniques. 2000, 28, 400-408.
Samuelov, et al. Appl Environ Microbiol. 65:2260-3 (1999).
Sanchez, et al. Biotechnol. Prog. 21:358-65 (2005a).
Sanchez, et al. Metab Eng. 7:229-39 (2005b).
Stols and Donnelly App. Environ. Microbiol. 63:2695-701 (1997).
Tolentino et al., Biotech. Let. 14:157-62. (1992).
Underwood, et al., App. Environ. Microbiol. 68: 1071-81 (2002).
Varadarajan and Miller, Biotechnol. Prog. 15:845-854 (1999).
Vemuri, et al. J. Ind. Microbiol. Biotechnol. 28:325-32 (2002).
Vemuri, G. N.; Eiteman, M. A.; Altman, E. Effect of growth mode and pyrucate carboxylase on succinic acid production by metabolically engineered strains ofEscherichia coli. Appl Environ Microbiol. 2002, 68, 1715-1727.
Volkert, et al., J. Bact. 176:1297-302 (1994).
Wang, et al., App. Environ. Microbiol. 66:1223-7 (2000).
Wang, et al., J. Biol. Chem. 267:16759-62. (1992).
Xu, et al. Appl. Microbiol. Biotechnol. 51:564-71 (1999).
Xu, et al., Biotechnol. Prog. 15:81-90 (1999).
Yang et al., Metab. Eng. 1, 141-152 (1999b).
Yang YT, Aristidou AA, San KY, Bennett GN. Metabolic flux analysis ofEscherichia colideficient in the acetate production pathway and expressing theBacillus subtilisacetolactate synthase. Metab Eng. Jan. 1999;1(1):26-34.
Yang YT, Peredelchuk M, Bennett GN, San KY. Effect of variation ofKlebsiella pneumoniaeacetolactate synthase expression on metabolic flux redistribution inEscherichia coli. Biotechnol Bioeng. Jul. 20, 2000; 69(2):150-9.
Yang, et al. Biotechnol. Bioeng. 65:291-7 (1999).
Yanisch-Perron, et al., Gene 33:103-19 (1985).
Zeikus, et al., App. Microbiol. Biotechnol. 51:545-52 (1999).
Bennett George N.
Ka-Yiu San
Lin Henry
Baker & McKenzie LLP
Hiriyanna Kelaginamane T.
Kaushal Sumesh
Rice University
LandOfFree
Aerobic succinate production in bacteria does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aerobic succinate production in bacteria, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aerobic succinate production in bacteria will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3847340