Advanced Mo-based composite powders for thermal spray...

Stock material or miscellaneous articles – All metal or with adjacent metals – Composite; i.e. – plural – adjacent – spatially distinct metal...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S240000, C075S255000, C148S407000

Reexamination Certificate

active

06376103

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to commonly assigned, copending U.S. patent application Ser. No. 08/390,732 filed Feb. 17, 1995. Application Ser. No. 08/390,732 is incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present invention relates to a thermal spray powder. In particular, the invention relates to molybdenum-based thermal spray powders useful for producing wear resistant coatings on the sliding contact friction surfaces of machine parts such as piston rings, cylinder liners, paper mill rolls, and gear boxes.
Thermally sprayed molybdenum coatings, due to their unique tribological properties, are useful in the automotive, aerospace, pulp and paper, and plastics processing industries. Molybdenum coatings provide a low friction surface and resistance to scuffing under sliding contact conditions.
Coatings which are flame sprayed from molybdenum wire sources are widely used in the automotive industry as, e.g., running surfaces on piston rings in internal combustion engines. The high hardness of these coatings is attributable to the formation during spraying of MoO
2
which acts as a dispersion strengthener. However, the process of flame spraying coatings from molybdenum wire is not sufficiently versatile for the more complex applications being developed for molybdenum coatings. Some of these applications require higher combustion pressures and temperatures, turbocharging, and increased component durability. The molybdenum wire produced coatings do not meet these requirements. Further, there is an increasing need for the tailoring of coating properties based on periodically changing design requirements. Powder based coating technologies, e.g., plasma powder spray offer flexibility in tailoring material/coating properties through compensational control, which is not readily achievable using wire feedstock.
Coatings which are plasma sprayed from molybdenum powder are more versatile than coatings from wire, but are relatively soft, and do not exhibit adequate breakout and wear resistance for the automotive and other applications described above. The molybdenum tends to oxidize during spraying, leading to weak interfaces among the lamellae of the coating and to delamination wear. Also, the aqueous corrosion characteristics of molybdenum coatings are poor.
The molybdenum powder may be blended with a nickel-based self-fluxing alloy powder, for example, powder including nickel, chromium, iron, boron, and silicon, to form a Mo/NiCrFeBSi dual phase powder (also referred to in the art as a pseudo alloy). The improved wear characteristics of a coating flame sprayed from the blend result in a wear resistant coating with desirable low friction properties and scuff resistance.
When this pseudo-alloy powder blend is plasma sprayed, however, the molybdenum particles and the NiCrFeBSi particles tend to form discrete islands in the coating. Although the overall hardness is greater, in microscopic scale the molybdenum islands are still soft and are prone to breakout and failure. Once the wear process is initiated, the coating exhibits rapid degradation with increased friction coefficient, particle pull out, and delamination.
Another improvement in plasma sprayed molybdenum coatings is described in the publication by S. Sampath et al., “Microstructure and Properties of Plasma-Sprayed Mo—Mo
2
C Composites” (
J. Thermal Spray Technology
3 (3), September 1994, pp. 282-288), the disclosure of which is incorporated herein by reference. A dispersion strengthened coating is plasma sprayed from a Mo—Mo
2
C composite powder. The Mo
2
C particles dispersed in the molybdenum increase the hardness of the coating. Also, the carbon acts as a sacrificial oxygen getter, reducing the formation of oxide scales between molybdenum lamellae of the coating during spraying and decreasing delamination of the coating. However, the hardness, wear resistance, and aqueous corrosion resistance of the coating is not sufficient for some applications.
Further improvement in plasma sprayed molybdenum coatings is described in above-referenced application Ser. No. 08/390,732. The dual phase powder blend disclosed in application Ser. No. 08/390,732 adds NiCrFeBSi powder to the above-described Mo—Mo
2
C composite powder. The coating made from this powder blend exhibits discrete islands similar to those described above for the Mo—NiCrFeBSi coating. The NiCrFeBSi islands have similar advantageous properties to those described above; however, the Mo
2
C particles dispersed in the molybdenum increase the hardness of the molybdenum islands, slowing degradation of the coating. Also, the carbon acts as a sacrificial oxygen getter, reducing the formation of oxide scales on the molybdenum islands of the coating during spraying and decreasing delamination of the coating, as described above. However, the aqueous corrosion resistance and/or hardness of the coating are still not sufficient for some applications.
The present invention is directed to even further improving the properties of molybdenum coatings, whether they are plasma sprayed or flame sprayed.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to overcome the disadvantages of the prior art molybdenum-based thermal spray powders and coatings.
It is another object of the invention to provide molybdenum-based thermal spray powders, as well as powder blends including such powders, for spraying of improved coatings with high aqueous corrosion resistance, high cohesive strength, and uniform wear characteristics without significant loss of sprayability of the powders or of low friction characteristics of the coatings made therefrom.
It is a further object of the invention to provide high hardness, low- and stable-friction coatings exhibiting high aqueous corrosion resistance, high cohesive strength, and uniform wear characteristics.
Accordingly, in one embodiment the invention is a molybdenum-based composite powder for thermal spray applications, the composite powder including an alloy selected from molybdenum-chromium, molybdenum-tungsten, and molybdenum-tungsten-chromium alloys dispersion strengthened with molybdenum carbide precipitates. In a narrower embodiment, the molybdenum-based composite powder includes about 10-30 weight percent of chromium and/or tungsten, about 1-3 weight percent carbon, remainder molybdenum.
In another embodiment, the invention is a blended powder for thermal spray applications, the blended powder including a mixture of (a) a molybdenum-based alloy selected from molybdenum-chromium, molybdenum-tungsten, and molybdenum-tungsten-chromium alloys dispersion strengthened with molybdenum carbide precipitates, and (b) a nickel-based or cobalt-based alloy. In a narrower embodiment, the blended powder consists essentially of about 10-50 weight percent of the nickel-based or cobalt-based alloy, the remainder being the dispersion strengthened molybdenum-based alloy. In still narrower embodiments, the nickel-based or cobalt-based alloy may be a self-fluxing nickel-based alloy comprising nickel, chromium, iron, boron, and silicon, or a Hastelloy® (nickel-based) alloy, or a Tribaloy® (cobalt-based) alloy. (Hastelloy and Tribaloy are registered trademarks of Haynes International and Stoody Deloro Stellite, respectively.)
In a further embodiment, the invention is a thermal spray coating having lamellae of a molybdenum-based alloy selected from molybdenum-chromium, molybdenum-tungsten, and molybdenum-tungsten-chromium alloys dispersion strengthened with molybdenum carbide precipitates. In a narrower embodiment, the thermal spray coating further includes lamellae of a nickel-based or cobalt-based alloy. In still narrower embodiments, the nickel- or cobalt-based alloy may be a self-fluxing nickel-based alloy comprising nickel, chromium, iron, boron, and silicon, or a Hastelloy alloy, or a Tribaloy alloy.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In one exemplary embodiment of the composite powder in accordance with the invention, the properties of a molybdenum-based coating are improved

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Advanced Mo-based composite powders for thermal spray... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Advanced Mo-based composite powders for thermal spray..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Advanced Mo-based composite powders for thermal spray... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2882121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.