Advanced interactive voice response service node

Telephonic communications – Audio message storage – retrieval – or synthesis – Voice activation or recognition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S015030, C379S201120, C379S221030, C379S265010, C379S266010

Reexamination Certificate

active

06427002

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to commonly-owned, co-pending applications filed concurrently herewith, entitled:
“Telecommunications Architecture for Call Center Services Using Advanced Interactive Voice Response Service Nodes” having application Ser. No. 09/074,096 filed May 7, 1998;
“Interactive Voice Response Service Node with Advanced Resource Management” having application Ser. No. 09/074,142 filed May 7, 1998;
“Communications Signaling Gateway and System for an Advanced Service Node” having application Ser. No. 09/074,072 filed May 7, 1998;
“Service Provisioning System for Interactive Voice Response Service” having application Ser. No. 09/074,050 filed May 7, 1998;
“Call and Circuit State Machine for a Transaction Control Layer of a Communications Signaling Gateway” having application Ser. No. 09/073,885 filed May 7, 1998; and
“System for Executing Advanced Interactive Voice Response Services Using Service-Independent Building Blocks” having application Ser. No. 09/073,887. The above applications are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to computer telephony, and more particularly to providing a platform for advanced interactive voice response service nodes to handle calls on a telephone network.
2. Related Art
Interactive Voice Response (IVR) platforms, also known as Voice Response Units (VRUs) or Audio Response Units (ARUs), are common in the telecommunications industry. It is common for a business that is a customer of an IVR service provider to use IVR services in conjunction with call center services. Interactive voice response service nodes are commonly used for customer call center routing. They perform processing of customer applications, based on one or more criteria selected by the customer, such as the dialed number of a call, Dialed Number Identification Service (DNIS), Automatic Number Identification (ANI), time of day, caller-entered digits, geographic point of call origin, etc. The IVR service nodes can also perform other IVR services such as automated servicing of callers for customers, caller surveys, telemarketing, and call parking until a call center has an available resource (e.g., a customer service agent).
An IVR service node typically includes a network audio server that is connected via voice trunks to a bridging switch on a switch network, and an automated call processor that processes customer IVR applications.
FIG. 1
illustrates a typical IVR service node systems architecture
100
. Bridging switch
110
is connected to an IVR service node
120
via voice trunks. A call processor
130
is a network audio server that provides the telephony interface between the IVR Service Node
120
and the bridging switch
110
. A computer processor
140
stores and executes customer application files to service a call. A disk storage
150
is employed to store customer audio files.
While
FIG. 1
illustrates a conventional IVR service node, there are many types of IVR service nodes each with variations in architecture and features. However, all currently available IVR service nodes have several limitations. The current IVR platforms: (1) use monolithic designs; (2) employ proprietary architecture; (3) are non-scaleable; and (4) have limited application processing capability.
First, current IVR platforms use monolithic designs. Several complex functions are realized with the current monolithic designs of IVR platforms. A node's internal processes are designed to accommodate specific external interfaces. Thus, whenever a modification is made to a network switch, database, or other external interfacing component, a significant portion of the IVR service node must be modified. This is undoubtedly costly considering the development, testing, and release processes that are involved.
Second, current IVR platforms employ proprietary architecture. A conventional IVR service node is typically built entirely by a single vendor. This is a significant monetary investment for a carrier to purchase and maintain such equipment. As a result, an IVR service provider (carrier) is dependent upon that vendor's architecture. If a carrier decides to modify its network switch signaling format, it must fund the vendor's development of an IVR service node to accommodate the modifications.
Third, current IVR platforms are non-scaleable. The monolithic design of conventional IVR service nodes severely limit their scaleability. The internal processes, internal interfaces, and external interfaces are so tightly coupled that adding additional components and network ports to a node requires re-engineering. As a result, any increased traffic demand for IVR services requires the addition of IVR service nodes to the network.
Fourth, current IVR platforms have limited application processing capability. The application processors of conventional IVR service nodes are designed so that each customer application is executed as a stand-alone process. This limits the number of applications that can be performed. Also, customers are demanding more customized IVR applications that require specialized architectures. This results in different types of IVR service nodes implemented throughout a network to handle different customer's IVR applications. This results in an inefficient network because a call needing a certain application must be routed to a certain service node irrespective of that node's load.
The above described limitations result in network inefficiencies and costly development of IVR service nodes and applications. Therefore, what is needed is an advanced interactive voice response service node that provides IVR services using a modular open systems architecture with increased application processing capability and improved scaleability.
SUMMARY OF THE INVENTION
The present invention is directed to a system and method for providing advanced interactive voice response (IVR) services within a telecommunications network through a next generation service node (NGSN). The NGSN system includes a plurality of intelligent peripherals interfaced to a telephonic switch network and a pair of redundant application servers. The system further includes a shared disk array networked to the application servers. The system also includes a node monitoring and alarm (a.k.a. management) workstation. The method includes the steps of interfacing a plurality of intelligent peripherals to a telephonic switch network, retrieving customer application files from a shared disk array, and executing customer application files to perform interactive voice response services via dual redundant application servers.
An advantage of the present invention is that it may be modularly designed to encapsulate each function into an individual hardware and/or software component. This makes modification less costly as modifying one function has minimal impact on other functions.
Another advantage of the present invention is that it may be built upon an open systems architecture that may use components from many different vendors. Many of the components are interchangeable and require minimal configuration so that many vendors may be used for any single component.
Another advantage of the present invention is that it may be scaleable. The size of a node may be increased by adding additional intelligent peripherals, the number of nodes may be increased in a network since any node can handle any function of a call.
Yet another advantage of the present invention is the increased capacity to process customer IVR applications. Further features and advantages of the present invention as well as the structure and operation of various embodiments of the invention are described in detail below with reference to the accompanying drawings.


REFERENCES:
patent: 4797910 (1989-01-01), Daudelin
patent: 4845739 (1989-07-01), Katz
patent: 4930150 (1990-05-01), Katz
patent: 5048075 (1991-09-01), Katz
patent: 5128984 (1992-07-01), Katz
patent: 5133004 (1992-07-01), Heileman, Jr. e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Advanced interactive voice response service node does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Advanced interactive voice response service node, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Advanced interactive voice response service node will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2848890

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.