Advanced closure device

Surgery – Instruments – Sutureless closure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06726704

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to hole closure devices for blood vessels.
BACKGROUND OF THE INVENTION
Many medical procedures require forming holes in blood vessels. After the procedure is completed, the holes must be closed, to prevent a fatal hemorrhage. Typically, such holes are closed using sutures, or by applying pressure against the hole.
U.S. Pat. No. 5,938,425 to Janzen et al., the disclosure of which is incorporated herein by reference, suggests sealing a hole by providing a sealing material outside of the hole.
U.S. Pat. No. 5,964,782 to Lafontaine et al., the disclosure of which is incorporated herein by reference, describes a catheter having hooks at its ends for bringing the sides of a hole together, for sealing by pressure or by electro-coagulation.
SUMMARY OF THE INVENTION
It is an object of some preferred embodiments of the invention to provide an implanted device for sealing holes in a blood vessel, the device having a smaller chance of retraction of spikes, barbs or other tissue engagement elements of the device, from the blood vessel, than devices of the prior art.
An aspect of some preferred embodiments of the invention relates to mechanically decoupling the spikes of a hole closure device from a part of the device that controls the device general geometry. Thus, the deformation of the spikes does not affect the device geometry and vice-versa. In a preferred embodiment of the invention, this results in a separation between the forces that change the device geometry to close the hole and the forces that maintain the spikes in side the blood vessel. This separation is expected to prevent the geometric distortion of the device from inadvertently retracting the spikes form the blood vessel.
In a preferred embodiment of the invention, the decoupling is achieved by assuring that energy stored by the device for closing the hole in the blood vessel is not stored in the spikes or in structures that spring-load the spikes. Thus, release of the energy is less likely to affect the hold of the spikes on the vessels. In plastically deformed devices, the spikes are configured so that the plastic deformation does not affect the spikes or parts of the device that spring-load the spikes.
An aspect of some preferred embodiments of the invention relates to providing a pivot bar for vessel-engaging spikes of a hole closure device. Preferably, the pivot bar is not part of the load bearing structure of the device. A potential advantage of using a pivot bar is that a spike can be rotated around the pivot bar without bending the spike and without and protrusion from the plane of the device and/or the surface of the blood vessel. Preferably, the pivot bar defines at its ends or along its length hinges (or weakened points) for controlling the twisting of the bar relative to the rest of the device, however, this is not necessary.
An aspect of some preferred embodiments of the invention relates to spacing the spike used to engage the blood vessel away from a hole in the blood vessel. Preferably, this results in a lower probability of the spike inadvertently retracting from the blood vessel.
An aspect of some preferred embodiments of the invention relates to a hole-closure device design, in which two concentric structures are provided, an inner structure for controlling the device geometry and an outer structure for supporting spikes and/or other means of engaging the blood vessel. Optionally, the spikes are coupled to the inner structure only through tab means provided to bend the spikes out of plane.
An aspect of some preferred embodiments of the invention relates to providing a hinge in a hole closure device. In a preferred embodiment of the invention, when the device distorts to close a hole, the distortion is controlled by the hinge, for example, being focused at the hinge or being prevented at the hinge. Preferably, the hinge is integral with the device. Alternatively, the device is formed of two or more parts attached to each other by the hinge. In a preferred embodiment of the invention, the device is designed for sealing an elongate cut in a blood vessel, by deforming between a substantially round configuration to a substantially ellipsoid configuration.
In a preferred embodiment of the invention, a multiple part device is provided, with all of the multiple parts being outside of the blood vessel and, preferably, being substantially equivalent in function.
An aspect of some preferred embodiments of the invention relates to a bi-stable hole closure device. In a preferred embodiment of the invention, the device has at least two stable states, a first state in which the device defines an open lumen through which a catheter, cannula or other tube may be provided and a second state in which the lumen is significantly contracted or even closed.
An aspect of some preferred embodiments of the invention relates to an elastic clip for closing a hole in a blood vessel. In a preferred embodiment of the invention, the clip is maintained in an open configuration, suitable for engaging a blood vessel, by inserting a spacer in the clip. After engaging the blood vessel, the spacer is moved or removed, so the clip can close. Preferably, the closure is elastic, super elastic or shape-memory based. Alternatively, the closure may be plastic, as a result of the application of force.
There is thus provided in accordance with a preferred embodiment of the invention, a hole closure device, comprising:
at least two blood vessel engaging structures, each comprising a base;
at least one second, deformable, structure, coupled to said at least two blood-vessel engaging structures and having a first deformation state and a second deformation state, wherein said at least one second deformable structure urges said two blood vessel engaging structures towards each other when going from said first deformation state to said second deformation state,
wherein, said change in deformation state is at least partially mechanically decoupled from each of said blood-vessel engaging structures, such that it does not effect a substantial deformation of said blood-vessel engaging structure relative to said base.
Preferably, said at least one second deformable structure comprises a deformable ring-like structure, adapted to enclose a blood vessel cannula-like tube in said first deformation state. Preferably, the device comprises a ring-like element on which said at least one deformable structure is mounted and wherein said at least one second deformable structure comprises at least two bending elements that couple said blood-vessel engaging structures to said ring-like element. Preferably, said ring-like element defines a lumen that has a substantially same radius in said deformation states. Alternatively, said blood vessel engaging structures each comprise at least one spike adapted for insertion into a wall of a blood vessel.
In a preferred embodiment of the invention, said blood vessel engaging structures each comprise at least two spikes adapted for insertion into a wall of a blood vessel. Preferably, said blood vessel engaging structures each comprise a pivot bar on which said spike is mounted.
In a preferred embodiment of the invention, said blood vessel engaging structures each comprise at least one tab, mounted on said pivot bar. Preferably, said tab comprises an anchor for holding said tab. Alternatively or additionally, said pivot bar comprises a hinge at either end.
In a preferred embodiment of the invention, said pivot bar is straight. Alternatively or additionally, said pivot bar is mounted on a spacer that spaces said pivot bar from said at least one second deformable structure.
In a preferred embodiment of the invention, said base is adapted for abutment against the blood vessel. Preferably, said bases are spaced apart a distance sufficient to prevent eversion of a blood vessel in which a hole is closed. Alternatively, said bases are spaced apart a distance sufficient to cause at least partial eversion of a blood vessel in which a hole is closed.
In a preferred embodiment of the inventio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Advanced closure device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Advanced closure device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Advanced closure device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3199948

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.