Advanced active circuits and devices for molecular...

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing liquid or solid sample

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S050000, C435S005000, C435S006120, C435S007100, C435S007200, C435S283100, C435S286100, C435S287100, C435S287200, C435S287300, C435S287700, C435S287900, C435S288700, C435S289100

Reexamination Certificate

active

06331274

ABSTRACT:

FIELD OF THE INVENTION
These invention relates to methods of manufacture and devices useful in performing active biological operations. More particularly, the inventions relate to devices and methods for manufacture of such devices containing active electrodes especially adapted for electrophoretic transport of nucleic acids, their hybridization and analysis.
BACKGROUND OF THE INVENTION
Molecular biology comprises a wide variety of techniques for the analysis of nucleic acid and protein. Many of these techniques and procedures form the basis of clinical diagnostic assays and tests. These techniques include nucleic acid hybridization analysis, restriction enzyme analysis, genetic sequence analysis, and the separation and purification of nucleic acids and proteins (See, e.g., J. Sambrook, E. F. Fritsch, and T. Maniatis,
Molecular Cloning: A Laboratory Manual,
2 Ed., Cold spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989).
Most of these techniques involve carrying out numerous operations (e.g., pipetting, centrifugations, electrophoresis) on a large number of samples. They are often complex and time consuming, and generally require a high degree of accuracy. Many a technique is limited in its application by a lack of sensitivity, specificity, or reproducibility. For example, these problems have limited many diagnostic applications of nucleic acid hybridization analysis.
The complete process for carrying out a DNA hybridization analysis for a genetic or infectious disease is very involved. Broadly speaking, the complete process may be divided into a number of steps and substeps. In the case of genetic disease diagnosis, the first step involves obtaining the sample (blood or tissue). Depending on the type of sample, various pre-treatments would be carried out. The second step involves disrupting or lysing the cells, which then release the crude DNA material along with other cellular constituents. Generally, several sub-steps are necessary to remove cell debris and to purify further the crude DNA. At this point several options exist for further processing and analysis. One option involves denaturing the purified sample DNA and carrying out a direct hybridization analysis in one of many formats (dot blot, microbead, microplate, etc.). A second option, called Southern blot hybridization, involves cleaving the DNA with restriction enzymes, separating the DNA fragments on an electrophoretic gel, blotting to a membrane filter, and then hybridizing the blot with specific DNA probe sequences. This procedure effectively reduces the complexity of the genomic DNA sample, and thereby helps to improve the hybridization specificity and sensitivity. Unfortunately, this procedure is long and arduous. A third option is to carry out the polymerase chain reaction (PCR) or other amplification procedure. The PCR procedure amplifies (increases) the number of target DNA sequences relative to non-target sequences. Amplification of target DNA helps to overcome problems related to complexity and sensitivity in genomic DNA analysis. All these procedures are time consuming, relatively complicated, and add significantly to the cost of a diagnostic test. After these sample preparation and DNA processing steps, the actual hybridization reaction is performed. Finally, detection and data analysis convert the hybridization event into an analytical result.
The steps of sample preparation and processing have typically been performed separate and apart from the other main steps of hybridization and detection and analysis. Indeed, the various substeps comprising sample preparation and DNA processing have often been performed as a discrete operation separate and apart from the other substeps. Considering these substeps in more detail, samples have been obtained through any number of means, such as obtaining of full blood, tissue, or other biological fluid samples In the case of blood, the sample is processed to remove red blood cells and retain the desired nucleated (white) cells. This process is usually carried out by density gradient centrifugation. Cell disruption or lysis is then carried out on the nucleated cells to release DNA, preferably by the technique of sonication, freeze/thawing, or by addition of lysing reagents. Crude DNA is then separated from the cellular debris by a centrifugation step. Prior to hybridization, double-stranded DNA is denatured into single-stranded form. Denaturation of the double-stranded DNA has generally been performed by the techniques involving heating (>Tm), changing salt concentration, addition of base (NaOH), or denaturing reagents (urea, formamide, etc.).
Nucleic acid hybridization analysis generally involves the detection of a very small number of specific target nucleic acids (DNA or RNA) with an excess of probe DNA, among a relatively large amount of complex non-target nucleic acids. The substeps of DNA complexity reduction in sample preparation have been utilized to help detect low copy numbers (i.e. 10,000 to 100,000) of nucleic acid targets. DNA complexity is overcome to some degree by amplification of target nucleic acid sequences using polymerase chain reaction (PCR). (See, M. A. Innis et al,
PCR Protocols: A Guide to Methods and Applications,
Academic Press, 1990). While amplification results in an enormous number of target nucleic acid sequences that improves the subsequent direct probe hybridization step, amplification involves lengthy and cumbersome procedures that typically must be performed on a stand alone basis relative to the other substeps. Substantially complicated and relatively large equipment is required to perform the amplification step.
The actual hybridization reaction represents one of the most important and central steps in the whole process. The hybridization step involves placing the prepared DNA sample in contact with a specific reporter probe, at a set of optimal conditions for hybridization to occur to the target DNA sequence. Hybridization may be performed in any one of a number of formats. For example, multiple sample nucleic acid hybridization analysis has been conducted on a variety of filter and solid support formats (See G. A. Beltz et al., in
Methods in Enzymology,
Vol. 100, Part B, R. Wu, L. Grossman, K. Moldave, Eds., Academic Press, New York, Chapter 19, pp. 266-308, 1985). One format, the so-called “dot blot” hybridization, involves the non-covalent attachment of target DNAs to filter, which are subsequently hybridized with a radioisotope labeled probe(s). “Dot blot” hybridization gained wide-spread use, and many versions were developed (see M. L. M. Anderson and B. D. Young, in
Nucleic Acid Hybridization—A Practical Approach,
B. D. Hames and S. J. Higgins, Eds., IRL Press, Washington, D.C. Chapter 4, pp. 73-111, 1985). It has been developed for multiple analysis of genomic mutations (D. Nanibhushan and D. Rabin, in EPA 0228075, Jul. 8, 1987) and for the detection of overlapping clones and the construction of genomic maps (G. A. Evans, in U.S. Pat. No. 5,219,726, Jun. 15, 1993).
New techniques are being developed for carrying out multiple sample nucleic acid hybridization analysis on micro-formatted multiplex or matrix devices (e.g., DNA chips) (see M. Barinaga, 253 Science, pp. 1489, 1991; W. Bains, 10 Bio/Technology, pp. 757-758, 1992). These methods usually attach specific DNA sequences to very small specific areas of a solid support, such as micro-wells of a DNA chip. These hybridization formats are micro-scale versions of the conventional “dot blot” and “sandwich” hybridization systems.
The micro-formatted hybridization can be used to carry out “sequencing by hybridization” (SBH) (see M. Barinaga, 253 Science, pp. 1489, 1991; W. Bains, 10 Bio/Technology, pp. 757-758, 1992). SBH makes use of all possible n-nucleotide oligomers (n-mers) to identify n-mers in an unknown DNA sample, which are subsequently aligned by algorithm analysis to produce the DNA sequence (R. Drmanac and R. Crkvenjakov, Yugoslav Patent Application #570/87, 1987; R. Drmanac et al., 4 Genomics, 114, 1989; Strezoska et al., 88 Proc. Natl.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Advanced active circuits and devices for molecular... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Advanced active circuits and devices for molecular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Advanced active circuits and devices for molecular... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2573932

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.