Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Animal or plant cell
Patent
1995-09-13
1999-11-16
Feisee, Lila
Drug, bio-affecting and body treating compositions
Whole live micro-organism, cell, or virus containing
Animal or plant cell
4241931, 4242771, 4241841, 424 857, 424 851, 424 852, 424 855, 424 856, 530350, 530351, 514 2, A01N 6300, A61K 39385, A61K 4505, C07K 14435
Patent
active
059852704
ABSTRACT:
The present invention relates to methods and compositions for enhancing immunological responses and for the prevention and treatment of infectious diseases or primary and metastatic neoplastic diseases based on the administration of macrophages and/or other antigen presenting cells (APC) sensitized with heat shock proteins non-covalently bound to peptide complexes and/or antigenic components. APC are incubated in the presence of hsp-peptide complexes and/or antigenic components in vitro. The sensitized cells are reinfused into the patient with or without treatment with cytokines including but not limited to interferon-.alpha., interferon-.alpha., interleukin-2, interleukin-4, interleukin-6 and tumor neurosis factor.
REFERENCES:
patent: 4690915 (1987-09-01), Rosenberg
patent: 5188964 (1993-02-01), McGuire et al.
patent: 5232833 (1993-08-01), Sanders et al.
patent: 5348945 (1994-09-01), Berberian et al.
Barrios et al., 1994, "Specificity of antibodies induced after immunization of mice with the mycobacterial heat shock protein of 65kD", Clin. Exp. Immunol., 98:224-228.
Barrios et al., 1994, "Heat shock protein as carrier molecules: in vivo helper effect mediated by Escherichia coli GroEl and DnaK proteins requires cross-linking with antigen", Clin. Exp. Immunol., 98:229-233.
Barrios et al. (1992) "Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines that can circumvent the need for adjuvants and Bacillus Calmette Guerin priming", Eur. J. Immunol. 22:1365-1372.
Basombrio (1970) "Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene", The Institute for Cancer Research 30:2458-2462.
Blachere et al. (1993) "Heat Shock Protein Vaccines Against Cancer," Journal of Immunotherapy 14:352-356.
Blachere and Srivastava (1993) "Immunization with GP96 heat shock proteins isolated from tumors or influenza virus infected cells elicits MHC-restricted, antigen-specific cytotoxic T lymphocytes against the corresponding cells", J. Cellular Biochem. Keystone Symposia NZ502, p. 124.
Boon "Toward a genetic analysis of tumor rejection antigens", Advances in Cancer Research 58:177-210.
Craig (1993) "Chaperones: Helpers Along the Pathways to Protein Folding", Science 260:1902-1904.
Elliott et al. (1990) "Naturally Processed Peptides", Nature 348:195-197.
Falk et al. (1991) "Allele-specific Motifs Revealed by Sequencing of Self-peptides Eluted from MHC Molecules", Nature 351:290-296.
Falk et al. (1990) "Cellular Peptide Composition Governed by Major Histocompatibility Complex Class I Molecules", Nature 348:248-251.
Fedweg and Srivastava "Evidence for biochemical heterogeneity of gp96 heat shock protein/tumor rejection antigen", Mount Sinai School of Medicine NZ 206, p. 108.
Flynn et al. (1989) "Peptide binding and release by proteins implicated as catalysts of protein assembly", Science 245:385-390.
Flynn et al. (1991) "Peptide-binding Specificity of the Molecular Chaperone BiP", Nature 353:726-730.
Franklin (1993) "Making vaccines fit the cancer", New Scientist 140:17.
Gething et al. (1992) "Protein Folding in the Cell", Nature 355:33-45.
Globerson and Feldman (1964) "Antigenic specificity of benzo[a]pyrene-induced sarcomas", Journal of the National Cancer Institute 32(6):1229-1242.
Jakob et al. (1993) "Small Heat Shock Proteins Are Molecular Chaperones", J. Biol. Chem. 268:1517-1520.
Jardetzky et al. (1991) "Identification of Self Peptides Bound to Purified HLA-B27", Nature 353:326-329.
Lakey et al (1987) "Identification of a peptide binding protein that plays a role in antigen presentation", Proc. Natl. Acad. Sci. USA 84:1659-1663.
Lanzavecchia (1993) "Identifying Strategies for Immune Intervention", Science 260:937-944.
Levy (1991) "ATP is Required for In Vitro Assembly of MHC Class I Antigens but Not for Transfer of Peptides across the ER Membrane", Cell 67:265-274.
Li and Srivastava (1993) "Tumor rejection antigen gp96/grp94 is an ATPase: Implications for protein folding and antigen presentation", EMBO J. 12(8):3143-3151.
Lindquist and Craig (1988) "The heat-shock proteins", Ann. Rev. Genet. 22:631-677.
Luescher et al. (1991) "Specific Binding of Antigenic Peptides to Cell-associated MHC Clas I Molecules", Nature 351:72-77.
Lukacs et al. (1993) "Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumor", J. Exp. Med. 178:343-348.
Lussow et al. (1991) "Mycobacterial heat-shock proteins as carrier molecules", Eur. J. Immunol. 21:2297-2302.
Madden et al. (1991) "The Structure of HLA-B27 Reveals Nonamer Self-peptides Bound in an Extended Conformation", Nature 353:321-325.
Maki et al. (1993) "Mapping of the Genes for Human Endoplasmic Reticular Heat Shock Protein gp96/grp94", Somatic Cell Mol. Genetics 19(1):73-81.
Maki et al. (1990) "Human homologue of murine tumor rejection antigen gp96: 5'-Regulatory and coding regions and relationship to stress-induced proteins", Proc. Natl. Acad. Sci. USA 87:5658-5663.
McCall et al. (1989) "Biotherapy: A New Dimension in Cancer Treatment", Biotechnology 7:231-240.
Nelson et al. (1992) "The Translation Machinery and 70 kd Heat Shock Protein Cooperate in Protein Synthesis", Cell 71:97-105.
Palladino et al. (1987) "Expression of shared tumor-specific antigen by two chemically induced BALB/c sarcomas", Cancer Research 47:5074-5079.
Prehn and Main (1957) "Immunity to methylcholanthrene-induced sarcomas", Journal of the National Cancer Institute 18(6):769-778.
Rosenberg et al. (1988) "Use of Tumor Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma", New England J. Med. 319:1676-1680.
Rothman (1989) "Polypeptide Chain Binding Proteins: Catalysts of Protein Folding and Related Processes in Cells", Cell 59:591-601.
Rotzschke et al. (1990) "Isolation and Analysis of Naturally Processed Viral Peptides as Recognized by Cytotoxic T cells", Nature 348:248-251.
Schumacher et al. (1991) "Peptide Selection by MHC Class I Molecules", Nature 350:703-706.
Srivastava et al. (1991) "Protein Tumor Antigens", Curr. Opin. Immunol. 3:654-658.
Srivastava et al. (1984) "The Serologically Unique Cell Surface Antigen of Zajdela Ascitic Hepatoma is also its Tumor-Associated Transplantation Antigen", Int. J. Cancer 33:417-422.
Srivastava et al. (1989) "Identification of a Human Homologue of the Murine Tumor Rejection Antigen GP96," Cancer Res. 49:1341-1343.
Srivastava et al. (1988) "Individually Distinct Transplantation Antigens of Chemically Induced Mouse", Immunology Today 9:78-83.
Srivastava et al. (1988) "Chromosonal Assignment of the Gene Encoding the Mouse Tumor Rejection Antigen gp96", Immunogenetics 28:205-207.
Srivastava et al. (1987) "5'-Structural analysis of genes encoding polymorphic antigens of chemically induced tumors", Proc. Natl. Acad. Sci. USA 84:3807-3811.
Srivastva et al. (1993) "Peptide-Binding Heat Shock Proteins in the Endoplasmic Reticulum: Role in Immune Response to Cancer and in Antigen Presentation", Advances in Cancer Research 62:153-177.
Srivastava and Maki (1991) "Stress-induced proteins in immune response cancer", Microbiol. Immunol. 167:109-123.
Srivastava and Heike (1986) "Tumor-specific immunogenicity of stress-induced proteins: Convergence of two evolutionary pathways of antigen presentation?", Seminars in Immunology 3:57-64.
Srivastava et al. (1986) "Tumor rejection antigens of chemically induced sarcomas of inbred mice", Proc. Natl. Acad. Sci. USA 83:3407-3411.
Szikora et al. (1990) "Structure of the gene of tum-transplantation antigen P35B presence of a point mutation in the antigenic allele", EMBO J. 9(4):1041-1050.
Topallian et al. (1989) "Tumor Specific Cytolysis by Lymphocytes Infiltrating Human Melanomas", J. Immunol. 142:3714-3725.
Udono (1993) "Heat shock proteins HSP70, HSP90 and GP96 elicit tumor specific immunity to the tumors from which they are isolated", J. Cell. Biochem. Suppl. 17D:113 (Abstract NZ225).
Udono et al. (1993) "Heat Shock Protein 70-associated Peptides Elicit Specific Cancer Immunity", J. Exp. Med.
Bansal Geetha P.
Feisee Lila
Fordham University
LandOfFree
Adoptive immunotherapy using macrophages sensitized with heat sh does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adoptive immunotherapy using macrophages sensitized with heat sh, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adoptive immunotherapy using macrophages sensitized with heat sh will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1320635