Adjusting stiffness and flexibility in sports equipment

Games using tangible projectile – Player held and powered – nonmechanical projector – per se,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C473S524000, C473S564000, C473S560000, C473S318000

Reexamination Certificate

active

06257997

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a sports apparatus whose degree and direction of stiffness and flexibility may be varied or dynamically controlled.
2. Discussion of Related Art
In recent years, sports equipment manufacturers have increasingly turned to different kinds of materials to enhance their sporting equipment. In so doing, entire lines of sports equipment have been developed whose stiffness or flexibility characteristics are but a shade different from each other. Such a shade of difference, however, may be enough to give the individual equipment user an edge over the competition or enhance sports performance.
The user may choose a particular piece of sports equipment having a desired stiffness or flexibility characteristic and, during play, switch to a different piece of sports equipment that is slightly more flexible or stiffer to suit changing playing conditions or to help compensate for weariness or fatigue. Such switching, of course, is subject to availability of different pieces of sports equipment from which to choose.
That is, subtle changes in the stiffness or flexibility characteristics of sports equipment may not be available between different pieces of sports equipment, because the characteristics may be fixed by the manufacturer from the choice of materials, design, etc. Further, the user must have the different pieces of sports equipment nearby during play or they are essentially unavailable to the user.
Turning to various types of sports, it can be seen how the lack of adjustability in stiffness and flexibility may adversely affect optimum performance of the player.
Hockey
Hockey includes, but is not limited to, ice hockey, street hockey, roller hockey, field hockey and floor hockey.
Hockey players may require that the flexure of the hockey stick be changed to better assist in the wrist shot or slap shot needed at that particular junction of a game or which the player was better at making. Players may not usually leave the field to switch to a different piece of equipment during play.
Younger players may require more flex in the hockey stick due to lack of strength; such flex may mean the difference between the younger player being able to lift the puck or not when making a shot since a stiffer flex in the stick may not allow the player to achieve such lift.
In addition, as the younger players ages and increases in strength, the player may desire a stiffer hockey stick, which in accordance with convention means the hockey player would need to purchase additional hockey stick shafts with the desired stiffness and flexibility characteristics. Indeed, to cover a full range of nuances of differing stiffness and flexibility characteristics, hockey players would have available many different types of hockey sticks.
Even so, the hockey player may merely want to make a slight adjustment to the stiffness or flexibility of a given hockey stick to improve the nuances of the play. Such would not be possible unless the multitude of hockey sticks included those having all such slight variations in stiffness and flexibility needed to facility such nuances.
U.S. Pat. No. 4,348,113 reveals insertion of juxtaposed mainstays into cavities of a shaft of a hockey stick to help the stick withstand excessive damage resulting from wear caused by abrasion as the butt side of the hockey blade scrapes or hits the ice. U.S. Pat. No. 5,879,250 reveals insertion of a core into a shaft of a hockey stick to help the stick stronger and more durable to withstand high strains during the course of play. A series of grooves are formed in the core in an attempt to attain a desire center of equilibrium.
Tennis
Tennis players also may want some stiffness adjustability in their tennis rackets and to resist unwanted torsional effects caused by the ball striking the strings during play. The torsional effects may be more pronounced in the case where the ball strikes near the rim of the racket rather than the center of he strings. Thus, it would be desirable to lock in the stiffness characteristic close to the rim as opposed to just at the handle end.
U.S. Pat. No. 4,105,205 reveals one or more rotatable beams of rectangular cross section arranged within a cavity of the tennis racket for radically changing its stiffness. U.S. Pat. No. 5,409,216 reveals a shaft in the form of a double head ends for improving the grip on the handle, which may change the stiffness or flexibility of the racket due to a change in orientation of the double head ends relative to the racket head. U.S. Pat. No. 3,833,219 reveals spacer discs in a tennis racket, each disc having a width that exceeds its thickness. The spacer discs, if made of metal, may be made in varied weights and thickness to allow for adjusted handle weight as well as for adjusted grip sizes.
Lacrosse
Lacrosse players use their lacrosse sticks to scoop up a lacrosse ball and pass the ball to other players or toward goal. The stiffness or flexibility of the lacrosse stick may affect performance during the game. Players may tire so some adjustment to the flexibility of the stick may be desired to compensate. With conventional lacrosse sticks, such adjustment is not available.
Other Racket Sports
Other types of racket sports also suffer from the drawback of being unable to vary the stiffness and flexibility of the racket during the course of play to suit the needs of the player at that time, whether those needs arise from weariness, desired field positions, or training for improvement. Such racket sports include racquetball, paddleball, squash, badminton, and court tennis.
For conventional rackets, the stiffness and flexibility is set by the manufacturer and invariable. If the player tires of such characteristics being fixed or otherwise wants to vary the stiffness and flexibility, the only practical recourse is to switch to a different racket whose stiffness and flexibility characteristics better suit the needs of the player at that time.
Golf
Golf clubs may be formed of graphite, wood, titanium, glass fiber or various types of composites or metal alloys. Each varies to some degree with respect to stiffness and flexibility. However, golfers generally carry onto the golf course only a predetermined number of golf clubs. Varying the stiffness or flexibility of the golf club is not possible, unless the golfer brings another set of clubs of a different construction. Even in that case, however, the selection is still somewhat limited.
Nevertheless, it is impractical to carry a huge number of golf clubs onto the course, each club having a slight nuance of difference in flexibility and stiffness than another. Golf players prefer taking onto the course a set of clubs that are suited to the player's specific swing type, strength and ability.
Skiing, Snowboarding, Snow Skating, Skiboarding
Skis are made from a multitude of different types of materials and dimensions, the strength and flexibility of each type differing to a certain extent. Skis include those for downhill, ice skiing, cross-country skiing and water-skiing. Other types of snow sports devices include snowboards, snow skates and skiboards. Beginners generally require more flex and, as they progress in ability, much less.
Skiers generally do not carry with them a multitude of different types of skis for themselves use during the course of the day to suit changing skiing conditions or to compensate for their own weariness during the day. The same holds true for those who use snowboards, snow skates and skiboards.
U.S. Pat. No. 3,300,226 reveals elongated bars in skis. Each bar may be rotated to a desired orientation to vary the stiffness and flexibility of the skis. The bars have a width that exceeds their thickness. U.S. Pat. No. 4,221,400 reveals set screws at one end of the skis used to keep the bars in desired orientations within the skis.
Ski Boots
Cross country and telemark skiing boots attach to the ski via a binding at the toe and have a free heel that allows the skier

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adjusting stiffness and flexibility in sports equipment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adjusting stiffness and flexibility in sports equipment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjusting stiffness and flexibility in sports equipment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2559357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.